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Abstract 

A pair of neural network-based algorithms is presented for predicting the tertiary structural class and the second- 
ary structure of proteins. Each algorithm realizes improvements in accuracy based on information provided by 
the other. Structural class prediction of proteins nonhomologous to any in the training set is improved signifi- 
cantly, from 62.3% to 73.9%, and secondary structure prediction accuracy improves slightly, from 62.26% to 
62.64%. A number of aspects of neural network optimization and testing are examined. They include network 
overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly 
depending on the particular proteins chosen for the training and test sets; consequently, an appropriate measure 
of accuracy reflects the more unbiased approach of “jackknife” cross-validation (testing each protein in the data- 
base individually). 
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Predicting the structure of a protein from the primary amino 
acid sequence is one of the fundamental problems in computa- 
tional biology. Much effort has been directed at the prediction 
of secondary structure. Recent applications of a variety of tech- 
niques, such as neural networks, Bayesian statistics, and other 
pattern recognition methods have obtained 3-state prediction ac- 
curacies (helix, sheet, other) of 62.7-64.4% (Qian & Sejnowski, 
1988; Holley & Karplus, 1989, 1991; Stolorz et al., 1991). This 
appears to be near the limit for unbiased secondary structure 
prediction of a single protein sequence. By creating profiles of 
aligned, homologous sequences, and training and testing neu- 
ral networks on these rather than on individual proteins, Rost 
and Sander have obtained substantial improvements, with an av- 
erage 3-state prediction accuracy of 72.5% on sequences non- 
homologous to any in the training set (Rost & Sander, 1994). 
Few modifications to the underlying neural network, relative to 
that used in the single sequence studies, were made. Although 
prediction accuracy may improve with the addition of more well- 
resolved protein structures (Rooman & Wodak, 1988), much of 
the inaccuracy in current secondary structure prediction meth- 
ods is believed to be due to the lack of consideration of long- 
range interactions that arise from the (unknown) tertiary 
structure. This is a consequence of the fact that many sequences 
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have alternative secondary structural possibilities (Kabsch & 
Sander, 1984; Argos, 1987; Holley & Karplus, 1991). 

It has been found that basic information on protein tertiary 
structure such as the folding class (i.e., all-a, all-& . . . , as de- 
fined by Levitt & Chothia [ 19761) can be helpful in improving 
the accuracy of secondary structure prediction (Taylor & Thorn- 
ton, 1984; Kneller et al., 1990; Presnell et al., 1992). Kneller 
et al. found that prediction accuracy on proteins in the all-a class 
was improved by 16% (from 63% to 79%) by using a neural net- 
work trained on similar proteins. Accuracy on proteins in the 
all+ class improved by 6%, from 63% to 69%. Accuracy on 
a / P  proteins did not improve and other classes were not exam- 
ined. The observed increase in accuracy was due partially to the 
fact that proteins used in the training set were more similar in 
tertiary structure to the predicted proteins than in a set including 
all protein classes, as determined by their secondary structure 
content and range of possible folds. Also, some of the increased 
accuracy was due to the reduction of the secondary structure pre- 
diction problem from the standard 3-state prediction (helix, 
sheet, and coil) to one of 2 states (coil and either helix or sheet 
for the all-a and all+ proteins, respectively). In the rare cases 
in which P-sheets appeared in proteins of the all-a class, they 
were never predicted by the network. Because information on 
the structural class may be obtained experimentally (e.g., by 
spectroscopic methods such as CD) with significantly greater 
ease than the determination of a high-resolution 3D structure, 
class-based secondary structure prediction could be useful in 
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practice. However, a purely computational approach combin- 
ing class and secondary structure prediction would be much 
more desirable because it could be applied immediately to any 
available sequence. 

Efforts at de novo folding class prediction have met with lim- 
ited success. Although overall helix and sheet content can be pre- 
dicted with less than 10% error (Muskal & Kim, 1992; Rost & 
Sander, 1993b), this margin of error is too large to identify pro- 
teins in the all-a and all-0 classes. One difficulty in identifying 
protein classes is that there are no clear-cut boundaries in sec- 
ondary structure content between proteins from the 4 classes 
(Rost & Sander, 1994). Rost and Sander (1993b) found that only 
58% of all-a proteins could be identified, with several non-a 
proteins misclassified as all-a. They found a 3% increase in sec- 
ondary structure prediction accuracy when these proteins were 
tested using a network trained on other all-a proteins. Unfor- 
tunately, the decrease in accuracy on the proteins misclassified 
as all-a outweighed this gain. Only 50% of proteins in the all- 
0 class could be correctly identified, with several proteins mis- 
classified as all+. Statistical algorithms have been developed 
which claim 70% accuracy at assigning a protein to one of 5 
classes, or 83% accuracy with 4 classes (Klein & DeLisi 1986; 
Chou, 1989; Zhang & Chou, 1992). However, some of the sets 
of proteins on which these algorithms were tested contained high 
levels of sequence homology (more than 90% identity in some 
cases) with each other and with the proteins used in determin- 
ing the numeric parameters of the algorithm. An unbiased test 
in which these algorithms are applied to proteins without sig- 
nificant sequence homology has not been done. 

Neural networks have yielded promising results in identify- 
ing specific tertiary folds with no experimental information be- 
sides the amino acid content and length (Dubchak et al., 1993). 
An accuracy of 87% was achieved at distinguishing proteins 
of 4 specific folds: 4-helix bundles, parallel (a/& barrels, nu- 
cleotide binding fold, and immunoglobulins. Although these 
results are of interest, the folds that were tested are very dif- 
ferent from each other in helix and sheet content, amino acid 
composition, and size; proteins with the same fold show little 
variation in these parameters. Thus, this algorithm may be in- 
sufficient for distinguishing proteins of more similar folds, with- 
out introducing additional parameters such as those considered 
here. 

In this paper, we show that information obtained from a sec- 
ondary structure prediction algorithm can be used to improve 
the accuracy of a neural network for the de novo prediction of 
the folding class. Furthermore, the results of the folding class 
prediction contain some tertiary structural information that is 
useful for improving the results of secondary structure predic- 
tion. This iterative approach yields better results than either pre- 
diction applied independently. The approach can be summarized 
as follows: (1) A secondary structure prediction for a protein 
is obtained using standard neural network techniques with the 
amino acid sequence as input. (2) Information from this predic- 
tion and other data obtained from the sequence (such as the 
length and the amino acid content) are provided to another neu- 
ral network, which predicts the structural class of the protein. 
(3) The structure class prediction is used in conjunction with the 
sequence information by a third network, which produces a 
slightly more accurate secondary structure prediction. This pro- 
cedure can be repeated. In this paper, we apply the integrated 
approach to a commonly used set of proteins (Kabsch & Sander, 

1983b) and compare it with independent structural class and sec- 
ondary structure prediction methods. Some cautions concern- 
ing this approach, and use of neural networks in general, are 
presented and discussed. 

Methods 

Neural networks 

All neural networks used in this model are standard feed- 
forward networks consisting of 2 or 3 layers of units (Rumelhart 
et al., 1986; Holley & Karplus, 1991). They are fully connected 
from one layer to the next. The first and last layers are referred 
to as the input and output layers, respectively. The middle layer, 
if present, is referred to as the hidden layer because its inputs 
and outputs connect only to other network units, rather than 
representing physical data (i.e., an amino acid sequence or sec- 
ondary structure). 

Each unit in the neural network accepts a number of inputs 
from units in the previous layer, or from external data in the case 
of the input layer. Each input is multiplied by a weight 
which represents the strength of the connection between 2 units 
i and j ,  and the total is offset by the bias b; of the unit: 

input, = C w, + b;. 
j 

The unit processes this input using a continuous, nonlinear “ac- 
tivation function” that switches from near 0 to near 1 over a 
fairly narrow threshold. The following function is used here: 

The network is made up of units that act as a set of nonlinear 
functions between the initial input and the final output. The in- 
dependent variables in these functions are the biases of each in- 
dividual unit, b,, and the weights between every pair of units 
in adjacent layers, w,. These variables are initialized with 
small, random numbers; they converge to useful values based 
on input data through an iterative process that is referred to as 
training the network. 

In practice, several modifications to this model were intro- 
duced to improve the speed of the algorithm presented by Hol- 
ley and Karplus (1989). First, units in the input layer simply pass 
their input through as their output, rather than using the for- 
mula given in Equation 2. This is possible because our activa- 
tion function is one to one: each possible output corresponds 
to a unique input. Therefore, the numerical values of the inputs 
are somewhat arbitrary as long as the encoding scheme is pre- 
served between training and prediction (Rumelhart et al., 1986). 
This modification improves the speed of the algorithm because 
multiple calculations of the nonlinear activation function (Equa- 
tion 2) can be avoided when training (and using) the network. 
Also, the bias b, is implemented as a weight Woi from an addi- 
tional unit in the previous layer that is always turned on (out- 
put = 1 .O). For units not in the input layer, this sum of weights 
from the previous layer is mathematically equivalent to Equa- 
tion l ,  and produces a slight simplification in the code. Because 
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the input layer is the first layer of the network, units in the in- 
put layer have their bias set to zero. Because the input layer can 
consist of many units (as in the networks presented here), a large 
number of variables are eliminated from the training procedure, 
resulting in faster convergence of the remaining weights and 
biases. 

Networks are trained on a set of data for which the desired 
output is known; this is referred to as the training set. The 
method used is back-propagation, a well-characterized algorithm 
for adjusting the weights and biases (Rumelhart et al., 1986). 
For sparse data sets (when compared to the total number of in- 
dependent variables in the network) the network may “memo- 
rize’’ features of the training set rather than learning general 
features applicable to data outside the training set (Rumelhart 
et al., 1986). We have measured the degree to which this takes 
place for our data and have taken steps to eliminate the effects 
of overtraining. 

After training, the network can be exposed to new data for 
which the desired output is not known to the network; this is 
known as the test set. To ensure unbiased testing, data in the test 
set should be dissimilar to data already presented to the network 
in the training phase. Qian and Sejnowski (1988) have shown 
that the secondary structure of proteins homologous to those 
in the training set is generally predicted with higher accuracy 
than that of unrelated proteins. For our networks, in which 
protein features were used as input, no proteins in the train- 
ing set showed significant sequence homology to proteins in the 
test set. 

Data set 

The proteins used in this study were a set of 62 globular pro- 
teins (69 chains) used in several previous studies of secondary 
structure prediction methods (Kabsch & Sander, 1983a; Holley 
& Karplus, 1991). All proteins in the database were refined to 
3.0 A or better. This data set includes examples of all globular 
folds for which a well-resolved structure was published prior to 
1983. No pair of protein chains in the data set contains more 
than 47% sequence identity. 

The program DSSP (Kabsch & Sander, 1983b) was used to 
classify the secondary structure of all residues in the database. 
All secondary structure types besides a-helix (H) and extended 
P-sheet ( E )  were collapsed into the “coil” category. The com- 
plete database contains a total of 10,767 residues with a com- 
position of 26% helix, 20% sheet, and 54% coil; 310-helices 
were treated as coil. 

Three different methods for partitioning this data set into 
training and test sets were examined. For comparison with ear- 
lier results, most tests were done with the 48-protein training set 
and 14-protein test sets first used by Kabsch and Sander (1983a). 
We also divided the database randomly into 10 sets of 48 train- 
ing proteins and 14 test proteins. These 10 sets were tested on 
several network topologies to determine the average results and 
the degree of variation that can occur. Because we found that 
results vary with the particular proteins chosen for training and 
test sets, final testing was done using jackknife cross-validation. 
Networks were trained on training sets produced by removing 
a single protein from the database. Each network was then tested 
on the excluded protein and the results were combined for eval- 
uation of overall prediction accuracy. 

Secondary structure prediction networks 

The network uses a “sliding window” approach to iteratively pre- 
dict the secondary structure of each residue in the protein. At 
a given time, the network is presented with 15-27 (the window 
width) sequential residues of the protein. When training or test- 
ing the network, this input window is centered on each of the 
residues in the protein in turn, and produces a secondary struc- 
ture prediction for that residue. An overview of this network is 
shown in Figure 1 and each layer is discussed below. 

For each residue in the input window, the residue type is en- 
coded and presented to the network in 21 separate units of the 
input layer. Twenty of the units represent a single amino acid 
residue and are turned on (input = 1) or off (input = 0) depend- 
ing on whether that residue appears at the particular position 
in the window. The 21st unit is turned on when no amino acid 
appears at that position; this occurs when the window overlaps 
the ends of the sequence. Thus, 21 units total are used in the in- 
put layer for each amino acid in the input window. 

The output layer of the networks consisted of 2 units, h and 
e ,  whose outputs correspond to helix and sheet prediction, re- 
spectively. During training, residues in an a-helix were trained 
using desired outputs of h = 0.95, e = 0.05. These values rep- 
resent extremes of the output function given in Equation 2, 
which is sigmoidal and approaches 0 and 1 in the limits of infi- 
nitely low and high input. Training with desired outputs set to 
0 or 1 can result in infinite weights, so values close to the upper 
and lower limits of the output function were chosen. These val- 
ues yield good results and require a reasonable time for network 
training. Residues in a @-sheet were trained with the desired out- 
puts h = 0.05, e = 0.95. All other residues (“coil” residues) were 
trained with the desired outputs h = e = 0.05. In making a pre- 
diction for a residue of unknown secondary structure, the out- 
puts h and e are compared to a cutoff; if neither value was 
greater than the cutoff, coil is predicted as the secondary struc- 
ture. If either value is greater than the cutoff, the correspond- 
ing secondary structure is predicted; if both are greater, the 
secondary structure corresponding to the higher of the 2 values 
is predicted. The cutoff was experimentally determined for each 
training set; the cutoff value that produced the highest accuracy 
(as measured by the sum of Matthews correlation coefficients, 
described below) on proteins in the training set was used. Pre- 
vious studies have shown a correlation between the magnitude 
of the network outputs and the accuracy of the prediction. For 
a similar network, the accuracy of the 3 1070 “strongest” predic- 
tions (highest network outputs) were found to be 79% accurate, 
as opposed to 63% for all outputs (Holley & Karplus, 1991). 

Hidden layers of several sizes were tested to determine which 
produced the most accurate results. A single hidden layer con- 
taining 1-20 units was used in each trial. Because several net- 
work topologies were tested, we developed a shorthand notation 
for describing it. The first number in the notation is the width 
of the input window, in residues (the number of units in the in- 
put layer is 21 times as large). If a hidden layer was used, the 
second number is the number of units in the hidden layer; if not 
present, the notation contains only 2 numbers corresponding 
to the size of the input and output layers (i.e., 19 x 2). The fi- 
nal number is the number of units in the output layer. Thus, a 
19 x 2 x 2 network corresponds to a window of 19 residues, with 
a hidden layer of 2 units, and produces 2 outputs Hand  E. This 
network contains a total of 399 input units, 2 units in the hidden 
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Fig. 1. Secondary structure prediction network. Units in the network are represented by ellipses, connections between units by 
solid lines. In the input layer, shown at the bottom of the figure, clusters of 21 units are used to input the type of each residue 
in a continuous stretch of sequence surrounding a given residue, i, for which the secondary structure is being predicted. De- 
pending on the identity of the residue, 1 of the 21 units in each cluster is turned on (input of 1); the rest are off (input of 0). 
These units are labeled Gres, and are turned on when the residue of type "res" occurs at the position. The 21st unit in each clus- 
ter is turned on if no residue is present at the position, as occurs when the input window overlaps the ends of the protein. This 
unit is labeled 6-. All input units are connected to every unit in the hidden layer, each of which is connected to both output 
units, Hand E. Units in the hidden and output layers are labeled with a sigmoidal curve to indicate the sigmoidal relationship 
betwen the input and the output (Equation 2). Most units and connections are not shown for clarity. 

layer, 2 units in the output layer, and 803 connections between 
units because the network is fully connected between adjacent 
layers. There are a total of 807 independent variables t o  opti- 
mize, i.e., the weight of each connection and the bias for each 
unit except those in the input layer. 

After all predictions are made, short stretches of helix (<4 res- 
idues) and sheet (<2 residues) are filtered t o  coil; these are the 
cutoffs used by DSSP for short segments of secondary structure. 
In addition to  this removal of short segments of secondary struc- 
ture, a n  additional filter was run on  the network outputs prior 
to their interpretation as secondary structure. In each step of this 
process, known as smoothing, h and e values from each posi- 
tion were averaged with the h and e values from residues at  ad- 
jacent positions: 

(3) 

(4) 

Values a t  the ends of the sequence were averaged only with the 
single adjacent residue. This process (a step) can be repeated 
once the entire sequence is processed. Over several steps of 
smoothing, structural features begin to  blur over a larger region 
of the sequence; this is expected because the equations are sim- 
ilar t o  those governing 1-dimensional diffusion. This procedure 

is used to eliminate sharp transitions in the network outputs over 
short stretches of sequence. 

Measurements of accuracy 

The most commonly reported measure of secondary structure 
prediction accuracy is the success rate, o r  Q3. This is the over- 
all percentage of correctly predicted residues of all 3 types, i.e., 

Here, R,,, is the number of correctly predicted residues of type 
str, and N is the total number of residues. Although the Q3 
score provides a quick measure of the accuracy of the algorithm, 
it does not account for differing success rates on different types 
of  secondary structure. We therefore also calculated the cor- 
relation coefficients (Matthews, 1975) for prediction of helix 
(CH) ,  sheet (CE),  and coil (Cc). 

In this calculation, p H  is the number of  correctly predicted he- 
lical residues, n H  is the number of residues that are correctly 
identified as something other than helix, oH is the number of 
nonhelical residues that are predicted as helix, and uH is the 
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number of helical residues that are missed by the algorithm. A 
corresponding calculation is done for C, and C,. 

Structural class prediction 

Quantitative definitions for a 4-class system have been proposed 
by Kneller et al. (1990) based on examination of typical proteins 
from the Levitt and Chothia (1976) classes. “All-a” proteins 
must have at least 75 residues (the size of the Ca-binding pro- 
tein 3ICB), contain at least 30% a-helix, and contain at least 
85% a-helix in regions of well-defined secondary structure. “All- 
@ ”  proteins must be at least 99 residues long (the size of plasto- 
cyanin, 3PCY), with less than 10% helical residues. “a/@” 
Proteins must be at least 138 residues long (the size of flavo- 
doxin, 4FXN), contain at least 15% a-helix and 5% @-sheet, and 
have approximate alternation of a and f l  structure (we quanti- 
fied this as meaning at least 2 alternations between helix and 
sheet). Proteins not fitting one of these descriptions are classi- 
fied “other.” The data set contained 14 chains in the all-a class, 
15 all-fl chains, 16 a/fl chains, and 24 other chains. All-a pro- 
teins contained an average of 55% helix, 2% sheet, and 43% 
coil. All-fl proteins averaged 4% helix, 36% sheet, and 60% coil. 
Proteins in the a/fl class averaged 30% helix, 17% sheet, and 
53% coil. Other proteins averaged 21% helix, 18% sheet, and 
61% coil and were too small or contained insufficient helix 
and sheet to fit any of the other classes. 

For predictions of the structural class; the sliding window 
method employed by secondary structure networks is inadequate 
because the network must view the entire protein at one time. 
One way of presenting global information is to provide the net- 
work with the amino acid composition of the protein and the 
sequence length. Dubchak and colleagues (1993) have shown 
that this information alone is sufficient to train a network to dis- 
tinguish among several specific tertiary folds that vary signifi- 
cantly in secondary structure content, amino acid composition, 
and size, as described above. 

An overview of the class prediction network is shown in Fig- 
ure 2. In addition to providing the network with information on 
sequence length and amino acid composition, data produced by 
the secondary structure prediction network are also given. Be- 
cause the class definitions depend on secondary structure, this 
information is expected to provide a good first-order approxi- 
mation of the structural class. Along with the original 21 inputs 
for length and amino acid composition, 2 inputs were provided 
for the percentage of helix and sheet predicted by the second- 
ary structure network. Two more inputs listed the percentage 
of “strong” predictions of helix and sheet from the same net- 
work (defined as a raw network h or e output greater than 0.6); 
the accuracy of these predictions is expected to be higher, al- 
though “strong” predictions are infrequent. A final input indi- 
cated the expected number of alternations between helix and 
sheet’as one traverses the primary sequence of the protein, also 

All- All-D dD Other 

t t t 

%A %R %N ... % v Length Predicted Predicted Predicted Predicted Predicted 
% Helix % Sheet % Helix % Sheet Alternations 

Amino Acid Composition (Strong) (Strong) 

Fig. 2. Class prediction network. Units in the network are represented by ellipses; connections between units by solid lines. Units 
in the input layer are labeled with linear curves, indicating that their output is equal to their input. Units in the hidden and out- 
put layers are labeled with sigmoidal curves, to indicate the sigmoidal relationship between the input and the output (Equation 
2). The input layer contains 20 units for describing the amino acid composition of a protein (labeled @/ores), 1 unit for the se- 
quence length, and 5 units containing characteristics of the protein predicted by the secondary structure network. These units 
indicate the predicted percent helix and sheet, the percentage of strong helix and sheet predictions (which are more accurate), 
and the predicted number of alternations between helix and sheet. All input units are connected to every unit in the hidden layer, 
each of which is connected to all output units. In the 4-output network, 1 output is used for each of the defined structural classes: 
All-@, all+, d o ,  and other. In the single-output version of this network, which predicts whether a protein belongs to a single 
class, the output layer contains 1 output unit representing the likelihood that a protein belongs to the given class. 
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as predicted by the secondary structure network. Several of these 
alternations are usually found in proteins from the or@ class. 
Results obtained using the full-class prediction network de- 
scribed above are compared to those obtained using a network 
without any predicted information on secondary structure, i.e., 
using only the first 21 inputs shown in Figure 2. 

Two types of output strategies were tested. A 4-output net- 
work with 1 output for each class (as defined by Kneller) directly 
predicts the class of a protein. The output is interpreted by pre- 
dicting the class corresponding to the highest of the 4 outputs. 
In addition, 4 separate single-output networks were trained to 
specialize in identifying proteins from 1 of the 4 structural classes. 
These networks were identical in topology to the 4-output net- 
work shown in Figure 2, except that each contained only 1 unit 
in the output layer, indicating the tendency of the tested pro- 
tein toward each particular class. As in secondary structure pre- 
diction, the output unit was compared to a cutoff in deciding 
whether a given class was predicted. This cutoff was optimized 
separately in each trial to achieve the highest accuracy on pro- 
teins in the training set. The latter method of making indepen- 
dent predictions has the disadvantage that several or none of the 
4 classes may be predicted. However, it might allow the network 
to specialize and produce more accurate predictions of the cor- 
responding class. 

Results 

Some aspects of the implementation 
of secondary structure net works 

To test the effects of overtraining on prediction accuracy in the 
test set, we trained secondary structure prediction networks for 
several thousand cycles. After each set of 5 training cycles, train- 
ing was paused to test the network on a prediction set. For this 
particular training/test division overtraining does occur, al- 
though the effect is small. A 19 x 2 x 2 network reached a max- 
imum prediction accuracy of 63.4%, then decreased to 62.0% 
with increased training. By contrast, jackknife testing revealed 
no significant overtraining effect. The non-jackknife results for 
the 19 x 2 x 2 network are shown in Figure 3A; jackknife re- 
sults for the same network are shown in Figure 3B. 

It is clear from a comparison of Figure 3A and B that the re- 
sults using the jackknife method are more consistent over very 
long training times. The non-jackknife results peak briefly at 480 
cycles of training, then fall off by 1.8% over the next 1,300 cy- 
cles. In contrast, the jackknife method produces an optimal pre- 
diction after around 600 cycles, and accuracy remains almost 
constant (never falling more than 1 Vo at any given point) over 
the remaining 1,400 cycles. It is difficult to determine the stop- 
ping point for non-jackknife training that will produce the high- 
est accuracy on a given prediction set without knowing the 
results in advance. Instead, training must be stopped when the 
decrease in error between several subsequent training steps be- 
comes sufficiently small (we used AE = 0.06, which occurs af- 
ter about 500 steps). 

Smoothing 
We found that 1 cycle of smoothing decreases training set ac- 

curacy while improving prediction results slightly for all net- 
works tested. However, prediction accuracy decreases if more 
than 1 cycle of smoothing is used. Results for the 19 x 2 x 2 net- 

..... A4 

0 w m eca sm 1m iw im leca lsm m 
Training Steps 

so 
0 w m eca eca 1m 1w 1.w lam 1sm m 

Training Steps 

Fig. 3. A: Overtraining effect. A 19 x 2 x 2 network was trained on 
the set of 48 training proteins and tested on the set of 14. No smooth- 
ing was used on the network outputs. Training was paused after every 
20 steps to measure accuracy on both the training and prediction sets. 
After several thousand steps of training, the training set accuracy in- 
creases to around 75%; accuracy on the prediction set peaks at around 
62-63'70, then begins to decrease. B: Training with jackknife cross- 
validation. A 19 x 2 x 2 network was tested on all proteins in the data 
set, using jackknife cross-validation. Training was paused after every 
5 steps to measure accuracy on both the training and prediction sets. Re- 
sults were weighted by sequence length and averaged. Accuracy on the 
prediction set remains fairly constant after about 600 steps of training. 

work are shown in Table 1. As can be seen, both the Q3 and the 
correlation coefficients improve with 1 round of smoothing. 
Further smoothing leads to a fairly steady decrease in both 
measures. 

Effects of topology 
Window widths from 15 to 27 were tested with and without 

a hidden layer; 19 was found to be optimal. At a window width 
of 19, seven hidden layer sizes were tested; the network topol- 
ogy with the best prediction success is 19 x 2 x 2 with 1 round 
of smoothing. As before, these results were compiled on the 
Holley and Karplus (1989) training and test sets for ease in com- 
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Table 1. Secondary structure prediction accuracy as a 
function of the number of smoothing cycles useda 

Prediction 
Smoothing accuracy 
cycles ( Q 3 )  CH CE CC 

61.9 36 32 35 
62.8 38 34 38 
62.2 37 34 37 
62.4 37 34 37 
61.7 36 32 36 
61.9 37 33 36 

a A neural network was trained on the 48-protein training set and ac- 
curacy was measured using the 14-protein test set. Correlation coeffi- 
cients are multiplied by 100. 

parison. Results for all networks tested are shown in Table 2, 
along with results reported by Holley and Karplus (1989). 

Dependence on training and test sets 
There was little variation in the results when calculations using 

the same training and test sets were repeated. This implies that 
convergence to a set of nearly optimum parameters was obtained 

Table 2. Secondary structure prediction accuracy 
for several different network topologiesa 

Prediction 
accuracy 

Network topology (Q3) CH CE CC 

1 5 x 2 ~ 2  
1 7 x 2 ~ 2  
1 9 x 2 ~ 2  
2 1 X 2 X 2  
2 3 x 2 ~ 2  
2 5 x 2 ~ 2  
2 7 x 2 ~ 2  

15 x 2 x 2 ( s ) ~  
17 x 2 x 2 (s) 
19 x 2 x 2 (s) 

23 x 2 x 2 (s) 
25 x 2 x 2 (s) 
27 x 2 x 2 (s) 

19 x 1 x 2 (s) 
19 x 3 x 2 (s) 
19 x 4 x 2 (s) 
19 x 5 x 2 (s) 
19 x 6 x 2(s) 
19 x 10 x 2 (s) 
19 x 20 x 2 (s) 

H & KC 

21 x 2 x 2 (s) 

61.8 
61.8 
62.4 
62.3 
63.0 
61.7 
61.7 

62.9 
62.5 
63.6 
62.6 
62.6 
61.8 
61.5 

59.5 
62.8 
62.6 
62.8 
62.3 
62.6 
62.2 

63.2 

35 
36 
37 
38 
37 
36 
36 

36 
37 
39 
37 
38 
36 
38 

37 
38 
38 
38 
38 
38 
37 

41 

30 
32 
32 
30 
32 
30 
28 

33 
34 
33 
32 
31 
29 
28 

0 
32 
31 
30 
31 
29 
26 

32 

34 
35 
35 
36 
38 
35 
34 

41 
37 
39 
36 
37 
35 
35 

28 
37 
36 
36 
36 
36 
35 

36 

a Neural networks were trained on the 48-protein training set and ac- 
curacy was measured using the 14-protein test set. Correlation coeffi- 
cients are multiplied by 100. 

(s), One round of smoothing. 
H & K, Holley and Karplus (1989). 

in each case. However, results vary widely depending on the 
choice of training and test sets. Several network topologies were 
tested on the 10 randomly partitioned training and test sets de- 
scribed in the Methods section. The results are shown in Table 3. 

As before, the best results were obtained using the 19 x 2 x 
2 network with 1 round of smoothing. However, it is evident 
that there is a large variation in the results, both for the predic- 
tion accuracy and the correlation coefficients. This suggests that 
considerable care has to be used in evaluating the results of a 
single partition test. In this study, further evaluations of second- 
ary structure prediction accuracy on the 62-protein database 
were done using the jackknife method of cross-validation. 

Structural class prediction 

The 4-output and single-output networks were tested on the 
database using jackknife cross-validation. Networks were first 
trained and tested without using any predicted information on 
secondary structure, i.e., using the 21-input topology described 
in the Methods section, under “Structural class prediction.” 
Training was stopped when the decrease in error was sufficiently 
small (AE = O.Ol/step, or about 350 training steps). The results 
obtained from the 2 types of networks are reported in Tables 4 
and 5. 

The single-output networks are able to correctly identify 43 To 
of the all-a proteins, 53% of the all-@ proteins, 69% of a!/@ 
proteins, and 66% of other proteins. Four-output networks per- 
formed better on all but 1 class, identifying 57% of the all-a pro- 
teins, 60% of the all-fl proteins, 63% of the d@ proteins, and 
71 070 of other proteins. Compared with results obtained by clas- 
sifying proteins directly using secondary structure predictions 
(Rost & Sander, 1993b), the 4-output network was comparable 
in classifying all-a! proteins (57% versus 58%) and slightly bet- 
ter at classifying proteins in the all-@ class (60% versus 50%). 

Table 3. Secondary structure prediction on 10 randomly 
chosen sets of training and test proteinsa 

Prediction 
accuracy 

Network topology (Q3) CH CE CC 

1 7 x 2 ~ 2  Worst: 58.9 30 33 30 
Best: 65.0 46 39 40 

Average: 61.9 36 32 34 

17 x 2 x 2 ( s ) ~  Worst: 59.8 35 32 32 
Best: 65.8 48 38 41 

Average: 62.3 37 31 35 

1 9 x 2 ~ 2  Worst: 58.4 23 29 28 
Best: 65.1 48 34 41 

Average: 61.5 36 31 34 

19 x 2 x 2 (s) Worst: 58.5 24 29 28 
Best: 66.7 51 39 44 

Average: 62.4 38 32 35 

a Neural networks were trained on randomly chosen sets of 48 pro- 
teins from the database and tested on the remaining 14 proteins. The 
best, worst, and average results for the 10 trials are shown. Correlation 
coefficients are multiplied by 100. 

(s), One round of smoothing. 
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Table 6. Structural class prediction using single-output 
networks and predicted in formation on secondary structurea 

Actual class 

Table 4. Structural class prediction using single-output 
networks without information on secondary structurea 

Actual class 

Network Prediction All-a AIL0 a/P Other 

All-a All-a ( 1  7) 
Not all-a (52) 

Not all-6 (50) 
All-0 All-6 (19) 

f f / P  (18) 

Other Other (23) 

Not a/0 (51) 

Not other (46) 
4 

10 

2 3 6 
13 13 18 

8 5 6 
7 11 18 

4 11 1 
11 5 23 

3 0 16 
12 16 8 

a Testing was done using jackknife cross-validation. 

Although this network is similar to that used by Dubchak et al. 
(1993) to identify 4 specific protein folds, it is clearly more dif- 
ficult for the network to learn to identify general structural 
classes; only 62% were correctly identified, compared to 87% 
of the proteins in the previous work. 

To apply the full class prediction network shown in Figure 2, 
the secondary structure of each protein was predicted using the 
19 x 2 x 2 network, with 1 round of smoothing. Class predic- 
tion was then done for each protein, using the jackknife proce- 
dure of cross-validation. The jackknife procedure was also used 
to obtain predicted secondary structures for each of the proteins 
tested by the class prediction network, to prevent any known in- 
formation on secondary structure content from being used in 
the test class prediction. However, accurate (rather than pre- 
dicted) information on secondary structure content was used for 
proteins in the training sets. This produces more accurate results 
on both the training and test sets (results not shown). The re- 
sults obtained using single-output and 4-output networks are 
shown in Tables 6 and 7, respectively. The overall training and 
prediction set accuracy versus training time is shown in Figure 4. 

It is clear from the tables that overall accuracy is quite good, 
and much better than without the predicted secondary structure 
input. The 4-output network correctly identifies 64% of all-a 
proteins, 73% of all-0 proteins, 81% of a/@ proteins, 75% of 
other proteins. As before, the single-output networks were 

Table 5. Structural class prediction using a 4-output 
network without in formation on secondary structurea 

Actual class 

Prediction Proteins All-a AIL6 a /p  Other 

Network Prediction All-a AIL0 a/6 Other 

All-a All-a (13) 8 0 1 4 
Not all-a (56) 6 15 15 20 

All-0 All-p (13) 0 9 2 2 
Not all-6 (56) 14 6 14 22 

a10 U / P  (14) 1 1 12 0 
Not a / P  ( 5 5 )  13 14 4 24 

Other Other (23) 3 2 0 18 
Not other (46) 11 13 16 6 

a Testing was done using jackknife cross-validation. 

slightly less successful; they correctly identified 57% of all-a pro- 
teins, 60% of all-0 proteins, and 75% of a/fl and other proteins. 
The addition of a hidden layer to either type of network did not 
improve the accuracy. Although all-a proteins are the most dif- 
ficult class for the network to identify, accuracy is slightly higher 
than a previous result of 58% obtained by directly determining 
the protein class using highly accurate (70%) secondary struc- 
ture predictions (Rost & Sander, 1993b). 

An important result is that no protein in the all-a class was 
misclassified as all-@ and no protein in the all$ class was classi- 
fied as all-a (Tables 6,7). Also, there were no misclassifications 
between the a / P  and “other” classes. The result demonstrates 
that the class prediction networks can always eliminate one or 
more classes with accuracy approaching 100%. This can be done 
by predicting the class of a protein using the 4-output network 
and all four of the single-output networks, and then eliminat- 
ing one or more classes based on the predictions. If the protein 
is predicted as all-a by either the 4-output network or single- 
output all-a network, all-0 is eliminated as a potential class, and 
vice versa. If a protein is predicted to be a/@ by any network, 
“other” is eliminated, and vice versa. Using both the single- 
output and 4-output networks for elimination is slightly better 
than using either alone because the predictions are independent 
and can sometimes lead to the elimination of more than 1 po- 
tential class. 

Table 7. Structural class prediction using a 4-output 
network and predicted in formation on secondary structurea 

Actual class 

Prediction Proteins All-a AIL0 a /p  Other 

All-a 15 7 1 3 4 
AH-@ 15 1 9 2 3 
f f / P  16 3 3 10 0 
Other 23 3 2 1 17 

Total: 43/69 (62.32%) predicted correctly 

a Testing was done using jackknife cross-validation. 

All-or 12 9 0 1 2 
All-@ 17 0 11 2 4 
@/0 17 2 2 13 0 
Other 23 3 2 0 18 

Total: 51/69 (73.91%) predicted correctly 

a Testing was done using jackknife cross-validation. 
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Fig. 4. Class prediction results. The network shown in Figure 2 was 
tested on all proteins in the data set, using jackknife cross-validation. 
Training was paused after every 5 steps to measure accuracy on both 
the training and prediction sets. After 500 steps of training, accuracy 
on the training set reaches 90%; accuracy on the prediction set levels 
out at  75%. 

Secondary structure prediction with class elimination 

Given the results for the class prediction, it appears that the qual- 
ity of the training set for secondary structure prediction can be 
improved by the removal of proteins in the class (or classes) elim- 
inated by the class ‘prediction networks. We would expect this 
to improve accuracy on all-a and a1l-P proteins, as reported by 
Kneller et al. (1990) but not for a//3 and “other” proteins, where 
no gain was seen. The following multistage algorithm was used 
for prediction of the secondary structure and class of a protein 
of unknown structure: 

1. Secondary structure is predicted using the 19 x 2 x 2 network 
shown in Figure 1, with 1 smoothing step. The training set 
for the network includes all proteins in a database of known 
structures. 

2. The secondary structure predictions are used to predict the 
class of the protein using the 4-output network shown in Fig- 
ure 2 and all 4 single-output networks. 

3. If the class is predicted as all-a by any network in step 2, all 
the all-/3 proteins are removed from the set; if the class is pre- 
dicted as all$ in step 2, the all-a proteins are removed from 
the training set. 

4. If proteins have been removed, the secondary structure is pre- 
dicted again using a 19 x 2 x 2 network trained on the smaller 
(“reduced”) training set. 

This algorithm was tested on the 62-protein database, using 
the jackknife validation method, i.e., each protein chain was re- 
moved in turn and the remaining 61 were used as the full train- 
ing database for the algorithm. The predictions obtained using 
the full training set were compared with predictions obtained 
using reduced training sets produced with the above method. Re- 
sults obtained using the full training set are shown in Table 8, 
and results obtained using the reduced training sets are shown 
in Table 9. A graph of training and prediction set accuracy ver- 

Table 8. Secondary structure predictions 
using the full training seta 

Prediction 
accuracy 

Test set (Q3) CH CE CC 

All-a proteins 60.87 31 16 32 
AIL0 proteins 61.99 11 33 32 

“Other” proteins 63.91 37 25 30 
a / p  proteins 62.48 38 31 37 

All proteins 62.26 37 33 34 

a Predictions are summarized by the actual class of the proteins 
tested (the test set). Testing was done using jackknife cross-validation. 

sus training time (for the full and reduced training sets) is shown 
in Figure 5 .  

Accuracy on both all-cr proteins and all-/3 proteins increased 
by about 1% when using the reduced training sets. Accuracy on 
a//3 proteins decreased slightly as a result of misclassification 
of several of these as all-a or all-@. Accuracy on “other” pro- 
teins actually increased slightly because several of these contain 
predominantly helix or sheet and were misclassified into the all- 
cr or all-0 classes. The average accuracy on the entire database 
(weighted by sequence length) increased by 0.38%, from 62.26% 
to 62.64%. Although these results are less accurate than the best 
results shown in Table 2, this is a consequence of the variation 
caused by the selection of a particular set of 48 training proteins 
and 14 test proteins in those trials; the jackknife procedure used 
here yields a more unbiased evaluation of prediction accuracy. 

We also tested the elimination of a//3 and “other” proteins 
from the training sets, in addition to the removal of all-a and 
all-0 proteins using the algorithm presented above. If the class 
of a protein was predicted as a//3 by any network in step 2, pro- 
teins from the “other” class were removed from the training set; 
if the class was predicted as “other” in step 2, the a//3 proteins 

Table 9. Secondary structure prediction 
using reduced training setsa 

Prediction 
Reduction accuracy 

Test set (%) (Q3) CH CE CC 

All-a proteins 16 62.03 32 17 32 
All-0 proteins 14 62.99 11 33 31 
a / p  proteins 5 61.91 38 31 35 

39 27 30 “Other” proteins I 64.69 
All proteins 10 62.64 40 33 34 

a Reduced training sets are those from which all-a and all-0 proteins 
were potentially eliminated. Results are summarized by the actual class 
of the proteins tested (the test set). The reduction measures the decrease 
in the number of proteins in the reduced training sets, relative to the full 
training set, averaged over all proteins in each class, e.g., for proteins 
in the all-a class, an average of 16% of the proteins in the full training 
set were eliminated to produce the reduced training sets. Tests were done 
using jackknife cross-validation. Correlation coefficients are multiplied 
by 100. 
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Fig. 5. Reduced versus full training sets. A 19 x 2 x 2 network was 
tested on all proteins in the data set, using jackknife cross-validation. 
Training was paused after every 5 steps to measure accuracy on both 
the training and prediction sets. Results were weighted by sequence length 
and averaged. Results using the training set reducing algorithm are com- 
pared to results using the entire training set. The reduced results con- 
sistently remain 0.4-1% higher than the unreduced results over 1,000 
training steps. 

were removed from the training set. Results obtained using this 
addition to the reduction algorithm are shown in Table 10. 

The modified reduction method led to a decrease in second- 
ary structure prediction accuracy for proteins from most struc- 
tural classes because elimination of the large a@ proteins could 
remove many residues from the training set without changing 
the proportions of secondary structure content. Average accu- 
racy on all 4 classes (weighted by sequence length) decreased by 
0.42%. 

Discussion 

A pair of neural network-based algorithms for predicting the 
secondary structure and structural class of proteins is presented. 
By using information provided by the secondary structure pre- 
diction network, the accuracy of the class prediction network 
improves by 11.6070, from 62.3% to 73.9%. Using predicted 
class information, the secondary structure prediction network 
realizes a small increase in accuracy, from 62.26% to 62.64%. 
This increase may not be significant. 

The structural class prediction results demonstrate that sec- 
ondary structure prediction, while an interesting theoretical 
problem in itself, is also useful as a step toward the prediction 
of aspects of tertiary structure, such as the structural class of 
a protein. It is important for a tertiary structure prediction al- 
gorithm to make use of all other relevant predictions. In the 
present case, inclusion of single sequence secondary structure 
predictions improved results by 11.6%. It is possible that the use 
of a more accurate multisequence profile secondary structure 
prediction algorithm such as that of Rost and Sander (1993a) 
would improve this result further. 

The multistage secondary structure prediction algorithm also 
demonstrates the possible benefits of cooperative structure pre- 

Table 10. Secondary structure prediction 
using reduced training setsa 

Prediction 
Reduction accuracy 

Test set (070) (Q3) C H  C E  CC 

All-a proteins 31 60.21 30 1 1  30 
5 30 30 All-@ proteins 29 62.48 

a / P  proteins 41 62.98 38 31 36 
“Other” proteins 28 60.23 23 21 24 
All proteins 32 61.84 38 31 33 

a Reduced training sets are those from which proteins in all 4 classes 
were potentially eliminated. Results are summarized by the actual class 
of the proteins tested (the test set). The reduction measures the decrease 
in the number of proteins in the reduced training sets, relative to the full 
training set, averaged over all proteins in each class. Tests were done 
using jackknife cross-validation. Correlation coefficients are multiplied 
by 100. 

diction algorithms. Although the accuracy of the class predic- 
tion algorithms presented here is too low to reliably narrow the 
training set down to proteins of a single structural class, the al- 
gorithm can, with near-perfect accuracy, eliminate one or more 
structural classes as a possibility. This limited prediction results 
in marginal improvements in secondary structure prediction ac- 
curacy. Removal of a single class from the training set results 
in a 1.2% increase in accuracy for all-a proteins (when all$ pro- 
teins are removed), compared to a 3 ‘70 increase in accuracy when 
all other classes are removed (Rost & Sander, 1993b). This in- 
crease in accuracy is not the result of simplifying the secondary 
structure prediction problem from 3 states to 2 states (i.e., he- 
lix or nonhelix for all-helical proteins), as done by Kneller et al. 
(1990). In fact, prediction of P-strands in these all-a proteins is 
actually slightly more accurate after reducing the training set 
(C, increases from 0.16 to 0.17 for proteins in the all-a class). 
Further improvements in accuracy could result from the use of 
larger data sets. The use of the class prediction algorithm elim- 
inates 1/2 to 1/4 of the data in this relatively small data set and 
so interferes with the ability of the neural network to derive gen- 
eral rules for secondary structure prediction. We are presently 
extending the approach to larger data sets to investigate this 
effect. 

The smoothing filter applied in the secondary structure pre- 
diction algorithm can be a useful tool for reducing noise in the 
data and slightly improving the accuracy of predictions without 
the need for a more complex algorithm. This filter is also use- 
ful as a visualization tool in viewing the location of helices and 
sheets in a secondary structure prediction. 

Although the work presented has focused on prediction of the 
secondary structure of single sequences, both the methods of 
smoothing and training set selection should be applicable to al- 
gorithms that operate on a profile of multiple, related sequences 
such as that used by Rost and Sander (1993a), which is based 
on a similar network. 

Finally, we have confirmed a significant dependence of the 
results obtained from the neural network algorithms on the 
choice of training and test sets (Zhang et al., 1992; Rost & 
Sander, 1993a). Future predictions should use the jackknife 
strategy of removal of each protein individually from the data- 

- 
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base to avoid variation in the results caused by a particular 
choice of training and test sets. If this method is impractical due 
to the longer time required, multiple cross-validation (several 
random partitionings of the data set into training and test sets) 
should be used to eliminate bias. As a side effect, the jackknife 
method reduces or eliminates the effects of overtraining a 
network. 
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