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Abstract 

A neural network algorithm is applied to secondary structure and structural class prediction for a database of 318 
nonhomologous protein chains. Significant improvement in accuracy is obtained as compared with performance 
on smaller databases. A systematic study of the effects of network topology shows that, for the larger database, 
better results are obtained with more units in the hidden layer. In a 32-fold cross validated test, secondary struc- 
ture prediction accuracy is 67.0%, relative to 62.6% obtained previously, without any evolutionary information 
on the sequence. Introduction of sequence profiles increases this value to 72.9%, suggesting that the two types 
of information are essentially independent. Tertiary structural class is predicted with 80.2% accuracy, relative to 
73.9% obtained previously. The use of a larger database is facilitated by the introduction of a scaled conjugate 
gradient algorithm for optimizing the neural network. This algorithm is about 10-20 times as fast as the standard 
steepest descent algor,ithm. 
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Secondary structure prediction is one element in understanding 
how the amino acid sequence of a protein determines its native 
state. A number of attempts have been made to develop tertiary 
folding algorithms based on a knowledge of the secondary struc- 
ture (Gunn et al., 1994; Monge et al., 1994). Current methods 
of secondary structure prediction usually assign one of three 
states (helix, sheet, or coil) to each residue of a protein. Rules 
for deriving a prediction from the identities of the surrounding 
residues have been based on a variety of algorithms. In recent 
years, neural networks (Rumelhart et al., 1986) have been ap- 
plied to this problem (reviewed in Sumpter et al., 1994; Barton, 
1995). A database of known structures (the “training set”) is used 
to train the network. It is then applied to a test set of structures 
to evaluate its accuracy. Homology between proteins in the two 
data sets may lead to false indications of greater accuracy (Qian 
& Sejnowski, 1988). On a typical database, without homology 
between training and test sets, methods that consider single pro- 
tein chains can produce a three-state accuracy of 62-63’70 (Qian 
& Sejnowski, 1988; Holley & Karplus, 1989, 1991; Chandonia 
& Karplus, 1995). Accuracy can be improved to 72.5% by train- 
ing and testing networks on groups of aligned, homologous se- 
quences, rather than on single chains (Rost & Sander, 1994). 
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Basic information on tertiary structure, such as the folding 
class (Levitt & Chothia, 1976), can also be predicted using neu- 
ral network methods. Using characteristics such as sequence 
length and amino acid composition, a network can assign pro- 
teins to one of four broad classes (all-alpha, all-beta, alpha/beta, 
or other) with 62.3% accuracy (Chandonia & Karplus, 1995). 
A two-step approach, in which the secondary structure of pro- 
teins is first predicted, and then used as additional input to the 
class prediction network, improves the success rate to 73.9%. 
Furthermore, such an approach can eliminate one or more classes 
as possible candidates for a given sequence with near-perfect ac- 
curacy. The latter result can be used to set up training sets for 
secondary structure prediction that more closely match the ex- 
pected class of the predicted protein, resulting in a slight gain 
in accuracy (Chandonia & Karplus, 1995). 

It has been shown that the particular proteins chosen for the 
training and test sets can lead to large variation in the results 
(Zhang et al., 1992; Rost & Sander, 1993a; Chandonia & Kar- 
plus, 1999, even in the absence of homology between the sets. 
Therefore, unbiased results require some method of multiple 
cross validation; i.e., splitting up the data set into many discrete 
groups, then testing each group individually (using proteins from 
the remaining groups as a training set) and averaging the results. 
This considerably increases the overall calculation time. 

In this paper, we apply a single-sequence secondary structure 
and class prediction neural network algorithm to a recently de- 
rived database containing more than five times as many se- 
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quences and residues as that employed previously. To reduce 
computational time required to  cross validate results on this 
database, a new neural network training method, developed by 
Merller (1993) and based on conjugate gradient minimization, 
is used. We describe the methods used in the calculations, and 
present results and a concluding discussion. We comment on the 
accuracy limit of such database approaches to  secondary struc- 
ture and class prediction algorithms and its relation to  the pro- 
tein folding mechanism. 

Methods 

Neural networks 

The neural networks are standard feed-forward networks con- 
sisting of two or three layers of units (Rumelhart et al., 1986; 
Chandonia & Karplus, 1995). They are fully connected from one 
layer to the next. The first and last layers are referred to  as the 
input and output layers, respectively. The middle layer, if 
present, is referred to as the hidden layer, because its inputs and 
outputs connect only to  other network units. A detailed descrip- 
tion of the secondary structure and tertiary class prediction net- 
works may be found in Chandonia and Karplus (1995). The 
shorthand method for describing neural network topology is also 
used here. Secondary structure prediction networks are described 
by three numbers: the width of the input window (in residues), 
the size of the hidden layer, and the number of units in the out- 
put layer. The notation, a “15 x 8 x 2 network” means that 
a window of 15 consecutive residues (using an input layer of 
15*21, or 315 units), a hidden layer of 8 units, and an output 
layer of 2 units are being used. Class prediction networks are 
described simply in terms of the number of units in each layer. 
For example, a 26 x 8 x 4 network has 26 input units, 8 hidden 
units, and 4 output units. 

Training a network involves minimizing an error function, 
which is a multivariate function of network weights. If w is a 
vector of the weights (w = [ wo, w,, . . . w,] ‘), most training 
strategies consist of picking a random initial vector wo, and up- 
dating it in a series of steps until the error function E(w)  is close 
to zero. In each step, the weights are adjusted by picking a search 
vector pk and a step size ak ,  and setting 

In feed-forward networks, the first derivative of the error func- 
tion with respect to  any of the weights can be computed with 
a single loop over the training set data (Rumelhart et al., 1986). 
The standard back propagation algorithm (BP) (Rumelhart 
et al., 1986) is called a “steepest descent” algorithm because pk 
is set to  the downward gradient -E’(w), whereas ak is fixed to 
a constant supplied by the user. A variation of BP used in many 
secondary structure prediction networks (Rost & Sander, 1994; 
Chandonia & Karplus, 1995) also includes a “momentum” term 
(rn * &-I) ,  but this adds little to  the speed of the algorithm 
while requiring a second user-supplied constant (Merller, 1993). 

A family of algorithms known as “conjugate gradient” (CG) 
algorithms uses a set of recursively determined conjugate vectors 
po..,, with the aO..N values chosen so to minimize the error 
E(Wkf1) along the line of possible wk+l values. The procedure 
for finding the optimal ak value along the line wk + akpk is 

called the “line search,” and is often the most time-consuming 
step. The initial direction po is set to  the gradient -I?’( w), and 
subsequent search vectors Pk are set t o  the component of the 
gradient in a direction conjugate t o  all the previous vectors 
P ~ , , ~ - , .  For quadratic error functions, this algorithm is very ef- 
ficient, requiring a number of steps equal to  the number of 
weights in the network to find the local minimum. For nonqua- 
dratic error functions, the procedure must be reset a t  least once 
every N (the number of weights) steps, with p set to  -E’(w),  
to  avoid running out of possible conjugate vectors. Although 
neural networks usually use nonquadratic error functions, CG- 
based algorithms are still an order of magnitude more efficient 
than the standard steepest descent procedure (Mdler ,  1993). 

Networks in this study were trained using the recently devel- 
oped scaled conjugate gradient (SCG) algorithm (Merller, 1993). 
SCG is slightly faster than other C G  based algorithms, because 
it uses an approximation to find the optimal step size, ak,  
rather than doing a time-consuming line search with each step. 
Furthermore, SCG does not require a direct computation of the 
Hessian matrix E”(w) ,  but only of the gradient E’(w); in feed- 
forward neural networks, this can be computed in two passes 
through the training data (Rumelhart et al., 1986). In tests on 
the parity problem (described in Rumelhart et al., 1986), SCG 
has been shown to be an order of magnitude faster than BP, in 
addition to scaling better with the addition of more weights (net- 
works with 16-100 weights were used in the study). Also, SCG 
converged to the exact solution more often than BP, and requires 
no user-supplied parameters (Mdler ,  1993). 

Data set 

The proteins used in this study were a set of 318 chains repre- 
sentative of high-resolution structures available in the Brook- 
haven Protein Data Bank (PDB) in early 1994. This database 
was prepared by Andrej Sali using the MOLSCRIPT program 
(Sali & Overington, 1994). First, protein chains from all well- 
resolved structures in the PDB were classified into groups ac- 
cording to sequence homology. The structure with the highest 
resolution in each group was taken to represent that group. All 
structures had been determined by X-ray crystallography to a 
resolution of 2.3 A or better; some chains for which only NMR- 
determined structures were available were also used. No pair of 
protein chains contained more than 30% identical residues. 

The program DSSP (Kabsch & Sander, 1983b) was used to 
classify the secondary structure of all residues in the database. 
All residues that were neither alpha helix (H) or extended beta 
sheet (E) were considered to be in the “coil” category. The com- 
plete database contains a total of 56,966 residues with a com- 
position of 30% helix, 21% sheet, and 49% coil; 310-helices 
were treated as coil. 

Multiple cross validation trials are necessary to minimize vari- 
ation in results caused by a particular choice of training or test 
sets (Rost & Sander, 1993a; Chandonia & Karplus, 1995). Be- 
cause of the size of the database, jackknife cross validation (in- 
dividual testing of each protein in the database) was not feasible. 
Instead, the database was divided into 32 groups, each contain- 
ing several protein chains (31 sets of 10 chains, 1 set of 8). Net- 
works were trained on sets produced by removing one group of 
proteins at  a time from the database of 318. Each network was 
then tested on the excluded group of proteins and the results 
were combined for evaluation of overall prediction accuracy. 
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Structural class prediction 

Quantitative definitions for a four-class system have been pro- 
posed by Kneller et al. (1990), based on examination of typical 
proteins from the Levitt and Chothia (1976) classes. Details are 
described in Chandonia and Karplus (1995). The data set con- 
tained 52 chains in the all-a class, 48 all-P chains, 84 a/P chains, 
and 134 other chains. All-a proteins contained an average of 
59% helix, 2% sheet, and 39% coil. All-P proteins averaged 3% 
helix, 32% sheet, and 55% coil. Proteins in the a/@ class aver- 
aged 34% helix, 20% sheet, and 46% coil. Other proteins av- 
eraged 20% helix, 23% sheet, and 56% coil, and were too small 
o r  contained insufficient helix and sheet to  fit any of the other 
classes. 

Measurements of accuracy 

Three-way percent accuracy (Q3) and correlation coefficients 
(Matthews, 1975) for prediction of helix (CH), sheet (CE), and 
coil (C,) were used to evaluate accuracy; details are given in 
Chandonia and Karplus (1995). For evaluating the accuracy of 
structural class prediction, correlation coefficients for each class 
(CA, CB, CA/B, and C,) were used; the overall four-way percent 
accuracy (Q4) was also calculated for the 4-output network. 

Smoothing 

The smoothing algorithm is a method in which the raw network 
outputs for each residue are averaged with those of the imme- 
diately adjacent residues; details are given in Chandonia and 
Karplus (1 995). 

Results 

Secondary structure prediction 

Because our previous study had shown a 19 x 2 x 2 network to 
be optimal for secondary structure prediction on a smaller data 
set (Chandonia & Karplus, 1995), we first tested this method on 
the larger database. As in the previous study, one round of 
smoothing was used. To test for effects of  overtraining on pre- 
diction accuracy, we trained our secondary structure networks 
for 1,000 steps using the SCG algorithm, pausing every 5 steps 
to evaluate accuracy on the prediction set. Results from the 32 
cross validation trials were combined using a weighted average 
based on the number of residues in each of the prediction sets. 

There are several notable differences between the results of 
this test and the results produced by the same topology network 
o n  a smaller database (Chandonia & Karplus, 1995). First, it is 
clear from the rapid rise in both training and prediction set ac- 
curacy that the SCG training method is much more efficient than 
the BP algorithm used previously. Accuracy on both the train- 
ing and test sets reach nearly optimal levels within 100 steps, and 
remain nearly constant during the last several hundred steps. 
Also, whereas accuracy on the prediction set was somewhat 
higher than in the previous study (63.39% versus 62.26%), the 
training set accuracy became significantly lower when using the 
larger database (64.46% versus 70.77%). This result implies that 
the network is unable to  “memorize” as many specific features 
of the training set when the size of the database becomes much 
larger than the number of independent variables (weights and 

biases) in the network. The improvement~in prediction set ac- 
curacy is not a result of the training method alone. To demon- 
strate this, the SCG algorithm was tested on the smaller database. 
There was no significant difference in accuracy from results ob- 
tained using the BP algorithm (results not shown). 

Effect of changes to the input layer 

Although accuracy on the prediction set was somewhat higher 
than in the previous study, it was unclear whether the accuracy 
limit was due to  the size of the database or the complexity of 
the network used to investigate it. To examine this, we increased 
the complexity of the network systematically by adding units, 
thereby increasing the number of variables (weights and biases). 
One method for increasing the number of variables in the net- 
work, while at  the same time increasing the information avail- 
able to  it, expands the window of residues that the network sees 
in determining the secondary structure of the central residue in 
the window. When expanding the window, there is a risk that 
information on residues distant in sequence will be irrelevant to 
the network’s determination of the structure of the central res- 
idue. In such cases, the complexity of network training would 
be increased, without the addition of useful information. We 
tested windows of 21 and 39 residues, and also a smaller win- 
dow of 17. The results are shown in Table 1. We also tested net- 
works that looked only for specific residues at specific positions 
relative to  the central residue, rather than at all residues within 
a given window size. The residues and positions were chosen 
using the feature selection algorithm RELIEF (Kira & Rendell, 
1992). This approach produced slightly less accurate results than 
the window method (results not shown). 

Although the best results are obtained when using the 19 x 
2 x 2 network, there is little variation with any of the other in- 
put layer sizes. The 39 x 2 x 2 network, with almost twice as 
many weights as  the 19 x 2 x 2 net, was able to  achieve only a 
1070 greater accuracy on the training set, and did not improve 
accuracy on the prediction set. This implies that the larger net- 
work was unable to formulate many more rules of secondary 
structure prediction, even specific rules applying only to the 
training set. Thus, information from residues more than nine 
amino acids away in the primary sequence appear to be incon- 
sequential in determining the secondary structure of a given 
residue. 

Table 1. Secondary structure prediction accuracy 
for networks with various sized input windows 
and a hidden layer of 2 unitsa 

Network topology Training Q3 Prediction Q3 CH CE Cc 

______ __ 

1 7 x 2 ~ 2  64.2 63.1 44 35 39 
1 9 x 2 ~ 2  64.5 63.3 44 36 39 
21 x 2 x 2  64.3 62.9 43 35 39 
3 9 x 2 ~ 2  65.5 63.1 44 35 39 

‘Networks were trained for 500 steps of SCG. One round of 
smoothing was used. Correlation coefficients are shown for the predic- 
tion set and are multiplied by 100. Combined results of 32-fold cross 
validation trials are shown. 
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Effect of changes to the hidden layer 

Another way to increase the number of weights in the network 
is to  increase the size of the hidden layer, in effect give the net- 
work more “memory” without increasing the amount of infor- 
mation (the input layer). We tested hidden layer sizes from 2 to  
12 units, keeping the input window fixed at 19 residues. Results 
are shown in Table 2. 

The results show a fairly steady increase in the training set ac- 
curacy with hidden layer size. Results on the prediction sets in- 
crease significantly as the hidden layer size rises from 2 to  5 units, 
with little change thereafter. A 19 x 8 x 2 network gives opti- 
mum performance on the prediction set. Hidden layer sizes above 
8 have a derogatory effect on prediction set performance, pos- 
sibly because the network uses the additional weights to “mem- 
orize” irrelevant features of the training set that are inapplicable 
to the nonhomologous sequences in the prediction set. A 19 x 
8 x 2 network uses approximately 3,200 free variables (weights) 
to  fit a training database of 50,000 residues. Each additional 
node in the hidden layer adds 401 additional weights to  the 
network. 

Smoothing 

For results obtained using the 19 x 8 x 2 network, applying the 
smoothing algorithm improves accuracy (Q3) from 65.4% t o  
66.4%. Identical results are seen when using the algorithm twice 
consecutively. However, applying the algorithm more than twice 
results in a decrease in accuracy. 

Further effects of topology 

Keeping the hidden layer size fixed at 8, we again attempted to 
optimize the size of the input window. Window widths from 15 
to 21 were tested; results are shown in Table 3. The 15 x 8 x 2 
network was found to outperform others with a larger window 
size, suggesting that the new rules derived by the network with 
a hidden layer of 8 units depend only on residues within 7 se- 

Table 2. Secondary structure prediction accuracy for  
networks with an input window of 19 residues 
and various hidden layer sizes 

Network topology Training Q 3  Prediction Q3 CH CE C c  

1 9 x  2 x 2  64.4 63.4 44 36 39 
1 9 x  3 x 2  66.3 64.7 48 38 41 
1 9 x  4 x 2  68.0 65.8 50 39 41 
1 9 x  5 x 2  68.9 66.2 51 40 41 
1 9 x  6 x 2  69.7 66.4 52 40 42 
1 9 x  7 x 2  70.4 66.1 52 40 41 
1 9 x  8 x 2  71.1 66.4 52 40 42 
1 9 x  9 x 2  71.8 66.1 52 39 41 
19 x 10 x 2 72.5 66.2 52 40 41 
1 9 x  1 1  x 2  73.2 65.8 52 39 40 
19 x 12 x 2 74.0 66.1 52 39 40 

- 

’Networks were trained for 1,000 steps of SCG. One round of 
smoothing was used. Correlation coefficients are shown for the predic- 
tion set and are multiplied by 100. Combined results of 32-fold cross 
validation trials are shown. 

Table 3. Secondary structure prediction accuracy for  
networks with various sized input windows, 
and a hidden layer of 8 units 

Network topology Training Q, Prediction Q3 CH CE C c  

I I X 8 X 2  69.0 66.2 51 39 42 
1 3 x 8 ~ 2  69.8 66.5 52 39 42 
1 5 x 8 ~ 2  70.3 66.5 52 40 42 
1 7 x 8 ~ 2  70.7 66.2 52 39 41 
1 9 x 8 ~ 2  71.2 66.2 51 39 41 
2 1 x 8 ~ 2  71.6 65.9 51 39 41 
3 9 x 8 ~ 2  75.9 63.7 49 37 39 

- _____________~ 

~~ 

“Networks were trained for 1,000 steps of SCG. One round of 
smoothing was used. Correlation coefficients are shown for the predic- 
tion set and are multiplied by 100. Combined results of 32-fold cross 
validation trials are shown. 

quential residues of the one for which structure is being pre- 
dicted. In fact, little accuracy is lost if the network is only 
presented with information in an 1 I-residue window (within 5 
sequential residues of the one predicted). 

Sequence profiles 

Using profiles of aligned homologous sequences as network input 
instead of single sequences has been shown to improve secondary 
structure results by about 6% (Rost & Sander, 1993b). We tested 
our  networks on a database containing profiles for our 318 se- 
quences from the HSSP database (Sander & Schneider, 1991). 
Preliminary results are given in Table 4. They show that the 6% 
increase in accuracy is maintained for our database, and that 
additional units in the input and hidden layers can improve ac- 
curacy beyond that seen in the 15 x 8 x 2 network found to be 
optimal for prediction of single sequences. 

Structural class prediction 

Both 4-output and single-output class prediction networks 
(Chandonia & Karplus, 1995) were tested on the database, using 
32-fold cross validation. To obtain the information on second- 
ary structure required by the class prediction network, a 19 x 

Table 4. Secondary structure prediction accuracy 
using sequence profiles 

Network topology Training Q3 Prediction Q3 CH CE Cc 

1 5 x  8 x 2  75.9 72.6 64 51 50 
1 5 x  9 x 2  76.3 72.8 65 52 50 
15 x 10 x 2 76.8 72.9 65 52 50 
1 7 x  8 x 2  76.2 72.9 65 52 50 
1 7 x  9 x 2  76.8 72.9 65 53 50 

a Networks were trained for 1 ,ooO steps of SCG. One round of smooth- 
ing was used. Correlation coefficients are shown for the prediction set 
and are multiplied by 100. Combined results of 32-fold cross validation 
trials are shown. 
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5 x 2 network was trained for 500 steps. Averaged over all tri- 
als, this network produced an overall accuracy of 65.7% on the 
prediction sets. 

For the class prediction network, we first tested the 25 x 4 and 
24 x 1 topologies, which were found to be optimal on the smaller 
database (Chandonia & Karplus, 1995). A graph of training and 
prediction set accuracy for the 4-output network is shown in 
Figure 1. 

Although there is much more variation in accuracy with con- 
tinued training than for secondary structure prediction, there is 
a clear peak in the prediction set accuracy between about 50 and 
300 training steps. Continued training leads to  “memorization” 
of the training set and loss of prediction set accuracy. For com- 
parison of class prediction networks in subsequent tests, we used 
the accuracy recorded after 300 steps. The results are very sim- 
ilar to those obtained on the smaller database; overall accuracy 
increases by 3.8% (from 73.9% to 77.7%). Accuracy at  elimi- 
nating potential classes remains high; only one all-beta protein 
was misclassified as all-alpha, and no all-beta proteins were mis- 
classified as all-alpha. Six proteins from the alpha/beta and 
“other” classes were misclassified between the two classes. There- 
fore, one class can be always eliminated by this 4-output class 
prediction network with 98% accuracy. 

Although the addition of a hidden layer was not effective at 
increasing class prediction accuracy using the smaller database 
(Chandonia & Karplus, 1995), we tested networks with hidden 
layers of 2-10 units on the larger database. Results for 4-output 
and single-output networks are shown in Tables 5 and 6. 

A hidden layer of 9 units appears optimal for class prediction 
using the 4-output network. Single-output networks for predict- 
ing each class can perform as well with smaller hidden layers as 
single-output networks with a hidden layer size of 9. Accuracy 
at class elimination remained over 98% for hidden layers of all 
sizes. As seen with our smaller database (Chandonia & Karplus, 
1999, the results obtained using 4-output networks are more ac- 
curate than those produced by single-output networks. It is likely 

66 
0 M 1w 

Fig. 1. Class prediction on P318 data set. 26 x 4 class prediction net- 
works were trained for 500 steps using the SCG algorithm. Training was 
interrupted after every 5 steps to measure accuracy on both the train- 
ing and prediction sets. Results from 32 cross validation trials are com- 
bined. Training set accuracy peaks at 84.2%; accuracy on the prediction 
set peaks at 16.1%, then decreases to 74.5% after 500 steps. 

Table 5. Structural class prediction using 4-output networks 

Network topology Training 4 4  Prediction 4 4  CA CB CA/B CO 

2 6 x  4 
2 6 x  2 x 4  
2 6 x  3 x 4  
2 6 x  4 x 4  
2 6 x  5 x 4  
2 6 x  6 x 4  
2 6 x  7 x 4  
2 6 x  8 x 4  
2 6 x  9 x 4  
2 6 x  1 0 x 4  

85.9 
86.4 
88.8 
90.3 
90.6 
90.9 
91.0 
91.0 
90.7 
90.6 

71.1 53 34 66 I1 
15.1 50 42 59 12 

54 44 63 72 17.5 
78.9 58 44 64 75 
19.6 60 45 65 16 
19.8 59 48 66 15 
19.8 59 48 65 15 
80.0 59 48 66 75 
80.2 58 48 65 76 
19.9 58 41 66 75 

- 
~ 

a Secondary structure predictions were produced using 1,OOO steps of 
training on a 15 x 8 x 2 network. Networks were trained for 300 steps 
of SCG. Correlation coefficients are shown for the prediction set and 
are multiplied by 100. Combined and averaged results of seven 32-fold 
cross validation trials are shown. 

that results could be further improved by a larger database, be- 
cause these class prediction networks contain more than 250 in- 
dependent weights and biases, and there are only 308 proteins 
in the training database. Neural networks have been shown to 
become inefficient if there are not a t  least twice as many train- 
ing cases as independent variables (Rumelhart et al., 1986). 

Secondary structure prediction with class elimination 

The class prediction algorithm can limit the predicted class of 
a protein to  three of the four possible protein classes with 98% 
accuracy. If the eliminated class is all-a or all-@, the correspond- 
ing proteins can be removed from the training set for second- 
ary structure prediction, and the resulting “reduced” training set 
can be used to re-predict the secondary structure of the protein. 
More details of this training set reduction algorithm are given 
in Chandonia and Karplus (1995). This algorithm was applied 
to  the larger database, using 15 x 8 x 2 secondary structure pre- 
diction networks and 26 x 8 x 4 (or 1) class prediction networks. 

Table 6. Structural class prediction using 
single-output networks 

Network topology CA CB CA/B CO 

. ____ . .-. - . - ~- 

2 6 x  1 
2 6 x  2 x 1  
2 6 x  3 x 1  
2 6 x  4 x 1  
2 6 x  5 x 1  
2 6 x  6 x 1  
2 6 x  7 x 1  
2 6 x  8 x 1  
2 6 x  9 x 1  
2 6 x  l o x  1 

39 
50 
53 
55 
53 
53 
54 
54 
53 
54 

19 
35 
39 
42 
39 
40 
39 
38 
38 
31 

57 
64 
64 
66 
66 
65 
64 
66 
65 
65 

68 
70 
13 
72 
12 
12 
12 
72 
71 
12 

a Networks were trained for 300 steps of SCG. Correlation coeffi- 
cients are shown for the prediction set and are multiplied by 100. Com- 
bined results of seven 32-fold cross validation trials are shown. 
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Results obtained using full training sets are shown in Table 7 ,  
and results obtained using reduced training sets are shown in Ta- 
ble 8. A graph of training and prediction set accuracy versus 
training time, for both the full and reduced training sets, is 
shown in Figure 2. 

Results obtained by applying the algorithm are similar to those 
seen when using the smaller database. Accuracy on both the all- 
a and al1-P proteins increased by about 1 Yo when using the re- 
duced training sets. Accuracy on a//3 proteins decreased slightly 
because several of these were misclassified as all-a or a1l-P. Ac- 
curacy on the “other” proteins increased slightly. The average 
accuracy on the entire database (weighted by protein length) in- 
creased by 0.4%, from 66.6% to 67.0%. The average increase 
is approximately the same as that observed on the smaller data- 
base, where accuracy increased from 62.2% to 62.6%. 

Concluding discussion 

Implementation of an improved neural network training algo- 
rithm has made possible the application of existing neural 
network-based procedures to a larger protein database. A con- 
jugate gradient-based algorithm such as SCG allows a database 
that is an order of magnitude larger to be investigated in roughly 
the same time as required for a standard back propagation al- 
gorithm. A database of 318 protein chains (containing 56,966 
amino acid residues) was used, roughly five times the size of the 
database studied previously. The effects of network topology 
on prediction accuracy are investigated systematically. Both sec- 
ondary structure and class prediction results improve by about 
4% with the larger database; i.e., the secondary structure pre- 
diction accuracy is 67.0%, and the structural class prediction ac- 
curacy is 80.2%. 

The methods described here focus on the prediction of the sec- 
ondary structure of single sequences. The improvements real- 
ized by a larger database and a more efficient training algorithm 
can be applied successfully to algorithms that operate on a pro- 
file of multiple, related sequences (Rost & Sander, 1993a), as 
such algorithms are based on a similar underlying network. We 
find that the use of profiles results in a 6% increase in accu- 
racy with our database, suggesting that the information in a 
larger database of nonhomologous sequences is independent of 
the evolutionary information in profiles. Other methods used 
by Rost and Sander (i.e., second level networks, insertion and 

Table 7. Secondary structure predictions using the 
full training set summarized by the actual class 
of the proteins tested (the test set) 

Prediction 
accuracy 

Test set ( Q 3 )  CH CE CC 

All-or proteins 70.2 53 15 47 
All-@ proteins 65.3 20 41 40 
o r / @  proteins 65.7 51  41 42 
“Other” proteins 67.9 53 40 42 
All proteins 66.6 54 41 43 

a T e s t ~  were done using 15 x 8 x 2 networks with 32-fold cross 
validation. 

Table 8. Secondary structure prediction using reduced 
training sets, from which all-a and all-/3 proteins 
were potentially eliminated 

Prediction 
accuracy 

Test Set Reduction (Q3) CH CE cC 

All-or proteins 12% 71.1 53 15 48 
All-@ proteins 12% 66.3 19 42 41 
a/@ proteins 3 % 65.6 51 40 42 

53 41 42 “Other” proteins 4 % 68.1 
All proteins 6 9’0 67.0 54 42 43 

a Results are summarized by the actual class of the proteins tested 
(the test set). The reduction measures the decrease in the number of pro- 
teins in the reduced training sets, relative to the full training set, aver- 
aged over all proteins in each class; e.g., for proteins in the all-cr class, 
an average of 12% of the proteins in the full training set were eliminated 
to produce the reduced training sets. Tests were done using 15 x 8 x 2 
networks with 32-fold cross validation. Correlation coefficients are 
multiplied by 100. 

deletion information) are being investigated currently, and an 
additional increase in accuracy is expected. 

The secondary structure and class prediction results demon- 
strate that the most efficient network topologies for solving a 
given problem can change as the size of the database increases. 
In particular, as more information is presented, the hidden layer 
becomes more important. The results demonstrate for the first 
time that there are improvements in accuracy due to the addi- 
tion of units to the hidden layer. Additional units in the hidden 
layer of neural networks allow the formulation of more com- 
plex (and accurate) rules for solving a given problem. However, 
there must be sufficient data in the training set to compensate 

Fig. 2. Reduced versus full training sets. 15 x 8 x 8 networks were 
trained for 1,000 steps using the SCG algorithm. Training was inter- 
rupted after every 5 steps to measure accuracy. Results from 32 cross 
validation trials are combined. Results using the entire training set are 
compared to those produced using reduced training sets (networks with 
a hidden layer size of 8 were used for class prediction). The reduced re- 
sults consistently remain 0.4-1 Vo higher than the unreduced results over 
the entire training period. 
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for the large number of independent variables (weights and bi- 
ases) that are determined during training. It is likely that, as the 
number of nonhomologous well-defined protein structures in- 
creases, networks with additional hidden units will become more 
effective at  predicting secondary structure and structural class. 

Despite the changes in database size and training procedure, 
several methods developed in the previous paper (Chandonia & 
Karplus, 1995) are still useful. Both the smoothing filter and the 
class-based training set selection method provide small but signif- 
icant improvements in secondary structure prediction accuracy. 

A question of practical and theoretical interest is the upper 
limit of the secondary structure prediction accuracy that can be 
achieved by this type of data base approach. Certainly, one im- 
portant factor is the lack of long-range interaction information 
due to tertiary contacts that can perturb the local secondary 
structural tendencies. It is likely that additional improvement 
will be achieved by a further increase in the number of nonho- 
mologous structures in the data base. Rooman and Wodak 
(1988) suggest that such improvement will be found until at least 
1,500 structures are included. The exact positions of helix and 
sheet ends vary within homologous families (Rost et al., 1994), 
and sometimes even change upon ligand binding (Jurnak et al., 
1990). A recent study (Rost et al., 1994) suggests that the up- 
per limit on secondary structure prediction accuracy wil be 8870, 
the average accuracy found by homology modeling. For individ- 
ual sequences of significant length (> 100 residues), our current 
accuracy ranges from around 60 to 90%. It will be difficult to  im- 
prove on the upper limit without more detailed modeling. How- 
ever, given a larger training database, neural networks should be 
able to learn additional prediction patterns that will improve ac- 
curacy for proteins on which prediction performance is poor cur- 
rently, without the need for tertiary structural information. 

The rather high accuracy of secondary structure prediction 
based on sequence alone suggests that the early formation of sec- 
ondary structure is likely to play a role in protein folding. In par- 
ticular, it may be important for reducing the search problem in 
finding the unique native state (Karplus & Weaver, 1994). Also, 
introducing the predicted secondary structure may be useful in 
developing algorithms for determining the structure of proteins. 
Some modeling attempts based on the experimental secondary 
structure have been described (Monge et al., 1994; Gunn et al., 
1 994). 
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