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A new potential energy function representing the conformational prefer-
ences of sequentially local regions of a protein backbone is presented.
This potential is derived from secondary structure probabilities such as
those produced by neural network-based prediction methods. The poten-
tial is applied to the problem of remote homolog identification, in com-
bination with a distance-dependent inter-residue potential and position-
based scoring matrices. This fold recognition jury is implemented in a
Java application called JThread. These methods are benchmarked on
several test sets, including one released entirely after development and
parameterization of JThread. In benchmark tests to identify known folds
structurally similar to (but not identical with) the native structure of a
sequence, JThread performs significantly better than PSI-BLAST, with
10% more structures identified correctly as the most likely structural
match in a fold library, and 20% more structures correctly narrowed
down to a set of five possible candidates. JThread also improves the aver-
age sequence alignment accuracy significantly, from 53% to 62% of resi-
dues aligned correctly. Reliable fold assignments and alignments are
identified, making the method useful for genome annotation. JThread is
applied to predicted open reading frames (ORFs) from the genomes of
Mycoplasma genitalium and Drosophila melanogaster, identifying 20 new
structural annotations in the former and 801 in the latter.
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Introduction

Efforts in recent years have succeeded in eluci-
dating the complete genome sequences of many
organisms. A major challenge in the post-genomic
era will be to determine the cellular functions of
each protein and potential mutants, especially vari-
ations involved in disease. Determining the three-
dimensional structure of a protein is a key step in
acquiring a detailed understanding of enzymatic
reaction catalysis and the interaction of proteins

with other molecules. However, predicting protein
structure from its amino acid sequence remains
one of the fundamental challenges of compu-
tational biology. For proteins with structures
similar to one that has been determined experi-
mentally, this problem is largely reduced to locat-
ing the similar fold and aligning it correctly with
the new sequence.1 For sequences with more than
25–30% identity with a protein of known structure,
this can be accomplished by pairwise sequence
alignment methods;2 some of these tools, such as
BLAST,3 are still in widespread use today because
of their speed. More remote homologs must be
detected through sequence profile-based methods
such as PSI-BLAST,4,5 or by threading the sequence
onto known folds using pseudopotential energy
calculations.1,6 The most accurate methods cur-
rently available are based on a combination of
profile-based scoring and conformational energy
evaluation.7 – 11 Accurate prediction of novel folds
is particularly important for structural genomics
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efforts,12 as proteins reliably assigned to the current
repertoire of folds are often eliminated as candi-
dates for experimental structure determination by
structural genomics groups.13

In order to model all proteins in newly
sequenced genomes, it is necessary to recognize
the structural templates associated with each gene
sequence, and to produce accurate alignments
of the sequences to their structural templates.
Current state of the art modeling tools such as
MODELLER14 are critically dependent on accurate
alignment to the template.15 While fold recognition
accuracy has improved gradually over time, align-
ment accuracy has not improved significantly
until recently.8 Computational speed is an import-
ant factor if we are to apply fold recognition
methods to all the predicted gene sequences in
large genomes. Conformational energy methods
based on non-local interactions, such as potentials
of mean force between amino acid residues,16 are
powerful, but computationally expensive.

Several aspects of protein structure, such as sol-
vent exposure of amino acid residues and second-
ary structure, may be predicted directly from the
primary sequence using tools such as neural
networks.17 – 19 This approach is usually computa-
tionally less expensive than threading, and the
resulting predictions can be combined with exist-
ing threading methods. Integration of these pre-
dictions has been shown to improve the accuracy
of remote homolog detection.9,20 – 22 However,
these predictions have not been demonstrated to
improve alignment accuracy significantly. It is
possible that this deficiency is caused by sub-
optimal encoding of the structural predictions, or
by inefficient combination of the prediction-based
scoring terms with other metrics.

Direct comparison of the alignment accuracy of
different methods is difficult, due to the lack of
common benchmark data sets and even common
measures of alignment accuracy. The latter
measures generally fall into two categories: those
based on the number of aligned residues in com-
mon with a reference alignment (i.e. Marchler-
Bauer & Bryant23), and those based on correlation
between contact maps of a model derived from
threading and the correct structure (i.e. Panchenko
et al.8). However, some improvement has clearly
been shown in recent years in cases where one
method has been compared directly to another on
identical test sets. For example, the FUGUE
method24 was compared directly to CLUSTALW25

on a set of 27 remote homologs (,20% sequence
identity); average alignment accuracy improved
from 32.6% to 51.1%. The COBLATH method10

was compared to PSI-BLAST on a set of 307 struc-
tural pairs. Accuracy was assessed by deriving
models from the alignments and counting the
number with root-mean-square deviation of less
than 8 Å from the correct structures; this number
improved from 202 models derived from PSI-
BLAST alignments to 223 derived from COBLATH
alignments.10 The 3D-PSSM9 method extends stan-

dard sequence-based methods using evolutionary
relationships identified manually in the SCOP
database,26 along with secondary structure predic-
tions and a solvation potential. On a test set of 136
homologous pairs of proteins undetectable by PSI-
BLAST, 3D-PSSM was able to reliably detect 18%
of the relationships.9

Improvement in methods has been demon-
strated through community participation in fold
prediction servers, such as LiveBench27 and EVA.28

In particular, fold recognition methods based on
the “meta-server” approach of combining struc-
tural models produced by many separate servers
running a variety of algorithms has been shown to
produce more accurate models than any of the
individual servers.29,30 It is expected that develop-
ment of additional individual prediction methods
will further enhance the accuracy of these meta-
servers.29

Here, we present a new statistically derived
potential, which represents the local conforma-
tional preferences of a protein backbone. This
potential is combined with other scoring metrics,
such as sequence profile-based matrices from PSI-
BLAST and a distance-dependent inter-residue
potential.16 The combined method is tested on
several benchmark data sets previously developed
for comparison of threading methods.20,21 Both
fold recognition and alignment accuracy are
demonstrated to improve significantly over current
methods such as PSI-BLAST. We present results of
our method on a recent set of LiveBench27 targets,
for comparison with other prediction methods and
to benchmark accuracy on a set of structures that
were all released after development and para-
meterization of our algorithm were completed. We
also apply our method to open reading frames
(ORFs) from the Mycoplasma genitalium and
Drosophila melanogaster genomes, to identify new
structural and functional assignments, and to deter-
mine additional proteins that may be modeled.

Results

Alignment accuracy

The Defay/Cohen benchmark set of proteins21

contains 126 structural matches (see Materials and
Methods). Correct alignments were generated by
structural superposition, as described in Materials
and Methods. Alignments were generated for
each of the sequence/fold pairs using global
dynamic programming with several different
scoring functions. The Identity scoring method
simply assigns a score of 1 for a match, and 0 for
a non-match. BLOSUM62 is a 20 £ 20 scoring
matrix used by default with BLAST.3 The position-
specific scoring matrix (PSSM) generated by PSI-
BLAST4 using the sequence as a probe against the
non-redundant sequence database (“nr”) was also
used as a scoring method. Finally, several scoring
functions based on secondary structure were
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tested, individually and in combination with the
PSI-BLAST PSSM. These are labeled P1–P3. P1
is a simple scoring function that assigns a
score of 1 for a match of predicted secondary
structure in the sequence with the known sec-
ondary structure in the fold, and scores 0 for a
non-match; this is similar to the scoring system
used by 3D-PSSM.9 P2 is based on predicted
secondary structure probabilities; a score from
0 to 1 is assigned on the basis of the predicted
probability of the sequence, assuming the same
secondary structure as the fold. P3 is the new
local backbone potential, described in Materials
and Methods and shown in Figure 3. The aver-
age accuracy for each scoring function is sum-
marized in Table 1.

Several results are apparent from Table 1. First,
there is an approximately 9% improvement in
alignment accuracy when combining the new local
potential (P3) with the PSI-BLAST PSSM, com-
pared to using the PSSM alone. The results of
differences in accuracy on individual sequences
(which are not weighted by sequence length) form
a distribution with a mean of 10.3(^1.5)%, and a
standard deviation of 17.1%. Second, there are sig-
nificant differences in accuracy depending on how
secondary structure predictions are encoded. Con-
sider exact matches to the structural alignment,
ASNS0, and those scores that accommodate a toler-
ance of ^1 or ^4 residues, ASNS1 and ASNS4. By
comparing the ASNS0 and ASNS4 columns, it is
apparent that all secondary structure prediction-
based potentials (P1–P3) were effective at pro-
ducing an accurate rough alignment of secondary
structure elements, while allowing small shifts of
one to three residues. Purely sequence-based scor-
ing methods such as BLOSUM62 and PSI-BLAST
showed a smaller difference between ASNS0 and
ASNS4. The new local potential (P3) performed
better at the ASNS0 level than the other two
prediction-based scoring methods, P1 and P2: the
distribution of the differences in ASNS0 between

P3 and P2 for individual sequences has a mean of
5.4(^1.4)%; the equivalent distribution of differ-
ences in ASNS0 between P3 and P1 has a mean of
9.3(^1.7)%, so P3 is significantly more accurate
than P2 or P1. This improvement may be due to
separate parameterization of Gly, Pro, and Asn
residues in the new potential; separate parameteri-
zation of these residues could lend P3 some of the
advantageous properties of sequence-based scor-
ing methods. The new local potential (P3) also per-
formed better in combination with PSI-BLAST than
the probability-based potential, P2. For both P2
and P3, nine possible weighting combinations
with the PSSM were tested, ranging from 10% P2
(or P3) and 90% PSSM, to 90% P2 (or P3) and 10%
PSSM. The optimal results for each, which
occurred at 60% P2 and 70% P3, are reported here.
Because the relative scales of both local potentials
and the PSSM are arbitrary, no conclusion about
the importance of secondary structure can be
drawn from the higher weighting of the local
potentials.

Estimation of alignment accuracy

Although the accuracy of the combined scoring
function is significantly better than for other
methods tested (the mean improvement in accu-
racy over the next best method is 4.9(^1.6)%),
there is considerable variation among individual
proteins. Percentage accuracy values for each of
the 126 structural matches form a distribution
with a mean of 57.7% and a standard deviation
of 32.9%, leading to great uncertainty in the value
of any alignment for further modeling. The method
performs significantly better on more homologous
sequences. For the 56 structural matches with
12% or greater sequence identity in the structural
alignment, accuracy forms a distribution with an
average of 88.6% and a standard deviation of
8.9%. Unfortunately, sequence identity in the
structural alignment cannot be measured a priori,
and sequence identity in the calculated alignment
does not correlate well with accuracy (data not
shown).

One metric that does correlate well with accu-
racy, and can be measured in the calculated align-
ments, is average alignment score. This is the total
score, including gap penalties, resulting from the
dynamic programming calculation, divided by the
number of aligned residues. The 49 matches with
the best average scores also have significantly
more accurate alignments; alignments in this sub-
set are 88.6% accurate, on average, with a standard
deviation of 9.9%. A plot of accuracy versus align-
ment score is shown in Figure 1. Alignment scores
are sorted into eight bins of equal width, and the
average and standard deviation in accuracy within
each bin are plotted. This principle was used to
derive a rough estimate of the accuracy of any
alignment based on the average alignment score;
details are given in Materials and Methods.

Table 1. Accuracy of different scoring methods on the
Defay/Cohen test set

Scoring method
% Accu-

rate ASNS0 ASNS1 ASNS4

Identity 37.7 25.8 35.7 55.2
BLOSUM62 48.1 36.4 45.3 63.4
P1—predicted 2ary
(simple)

40.3 15.4 38.8 64.7

P2—pred. 2ary (prob-
abilities)

45.3 20.3 43.8 69.4

P3—pred. 2ary (f/c) 45.9 25.4 43.8 66.9
PSI-BLAST 53.0 40.5 48.6 63.9
P2/PSI-BLAST combi-
nation

55.4 41.3 52.0 73.8

P3/PSI-BLAST combi-
nation

62.0 47.0 56.8 75.1

Scoring methods are described in the text. Data in the %
Accurate column are calculated using a tolerance of ^1.
ASNSn is alignment sensitivity (see the text for a full definition)
calculated using a tolerance of ^n.
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Additional test sets

Alignments were performed on the Fischer/
Eisenberg test set, using the same scoring methods
that were tested on the Defay/Cohen set. Optimal
gap penalties and relative weighting when combin-
ing the new local potential with the PSI-BLAST
PSSM were not recalculated. Structural matches
and sequence alignments were calculated in
several different ways. For direct comparison to
the Defay/Cohen test set results, structural
matches and correct sequence alignments were cal-
culated using MINAREA. This data set includes
128 structural matches, a result similar to the num-
ber of matches in the Defay/Cohen set. Results on
these structural matches are shown in Table 2,
columns 1–4. For comparison to other groups, the
68 structural matches (one per sequence) used in
the original work20 were tested. The results are
shown in the last column of Table 2.

On the Fischer/Eisenberg test set, results are
somewhat more accurate when tested on the
Fischer/Eisenberg structural matches than on the
matches identified by MINAREA. The Fischer/
Eisenberg structural matches contain only the best
match possible for each sequence; MINAREA
identifies 128 possible structural matches, an aver-
age of almost two per sequence. The MINAREA
set includes more remote homologs, for which
results are less accurate. For most methods tested,
the accuracy on the Fischer/Eisenberg data set is
somewhat lower than on the Defay/Cohen data
set. This is likely due to a larger number of multi-

domain proteins in the Fischer/Eisenberg set.
Because all tests were performed using global
alignments, rather than local, the method does not
perform as well when on larger proteins with
multiple domains. However, the results are quali-
tatively similar; the improvement resulting from
integration of the new local potential with the PSI-
BLAST PSSM is reduced from 9% on the Defay/
Cohen set to 5–6% on the Fischer/Eisenberg set.
Other methods have been tested on the Fischer/
Eisenberg set. The ASNS0 of GenTHREADER
alignments is reported for 44 structural matches
correctly identified by the method; accuracy was

Figure 1. Alignment accuracy versus average alignment score. Alignment scores are sorted into eight bins of equal
width, and the average and standard deviation in accuracy within each bin is plotted (error bars indicate one standard
deviation). Alignment accuracy is calculated using a tolerance of ^1.

Table 2. Accuracy of different scoring methods on the
Fischer/Eisenberg test set

Scoring
method

%
Accurate ASNS0 ASNS1 ASNS4

Fischer
%

accurate

Identity 35.7 24.8 33.9 53.4 35.9
BLOSUM62 46.6 34.1 44.3 64.6 48.3
f/c 44.4 24.1 42.0 66.4 50.6
PSI-BLAST 53.0 39.1 49.9 66.7 57.5
f/c/PSI-
BLAST
combi-
nation

58.0 41.8 53.2 69.7 63.4

The rightmost column shows accuracy calculated for Fischer/
Eisenberg matches, and the other columns show accuracy calcu-
lated for MINAREA matches. Data in the % Accurate column
are calculated using a tolerance of ^1. Scoring methods are
described in the text.

838 Genome Annotation and 3D Modeling



calculated relative to reference alignments created
using the structural superposition program
SSAP.31 The average ASNS0 of GenTHREADER on
these matches, weighted by alignment length, is
44.7%.7 For the same 44 matches, the average
ASNS0 of the combined scoring function described
above is 58.2%. The calculated ASNS0 on this sub-
set is larger than for the entire set because
GenTHREADER’s accuracy is not reported for
pairs that were not ranked first by its fold recog-
nition algorithm; the other 24 pairs are presumably
more difficult.

Both the Defay/Cohen test set and the Fischer/
Eisenberg test set were submitted to the 3D-PSSM
server. Because 3D-PSSM is available only as a
server and not as a downloadable program, the
fold library could not be controled. The current
3D-PSSM fold library contains proteins with at
least 70% sequence identity with every protein in
both test sets, with 100% identical sequences avail-
able for the majority of proteins in both sets. Inter-
estingly, the 100% identical matches were not
always the top hit returned by the server. Align-
ment accuracy could be directly compared only
when the 3D-PSSM server returned a match to a
fold that was identical with one of the proteins
in the Defay/Cohen or Fischer/Eisenberg fold
libraries. For the Defay/Cohen test set, 19 of 126
matches could be compared directly. Of these, all
statistics were statistically indistinguishable, with
3D-PSSM 1.6% ahead on ASNS0 and the combined
P3/PSI-BLAST scoring function 2.3% better on
ASNS4. For the Fischer/Eisenberg test set, 28 of
128 matches could be compared. For these
matches, 3D-PSSM performed significantly better
than the combined P3/PSI-BLAST potential (aver-
age results weighted by alignment length: 58%
versus 49% for ASNS0, and 85% versus 68% for
ASNS4). However, these results are not expected
to be indicative of performance on newly
sequenced proteins, because very similar test
sequences were included in the 3D-PSSM fold
library and, presumably, the training set. For the
P3/PSI-BLAST potential, similar sequences were
excluded from training sets as described in
Materials and Methods.

Accuracy of structural models

Although direct measures of alignment accuracy
are useful for comparing methods, it is informative
to compare the quality of the implied structural
models. Because alignment accuracy is a major
factor influencing model quality,15 accurate align-
ments are a necessary but not sufficient prerequi-
site for accurate models. Models were built for
each sequence in the Defay/Cohen and Fischer/
Eisenberg test sets from calculated alignments
to the optimal fold library templates using
MODELLER,14 version 6v2, with default options
(the “model” routine with one model). Models
were compared to the correct structures using
MaxSub.32 To compensate for inaccuracies caused

by the modeling procedure rather than the align-
ments, we also built “optimal” models from the
correct alignments (calculated from a structural
superposition; see Materials and Methods) and cal-
culated MaxSub scores for these models.

The results on the two data sets were very simi-
lar. The optimal models calculated from the correct
alignments had average MaxSub scores of 0.49 in
each set, out of a possible 1.0 for a perfect model.
This difference reflects limitations in the auto-
mated modeling procedure and structural dissimi-
larities between the fold templates and the true
structures. Rankings for other methods were simi-
lar to the rankings for alignment sensitivity. Aver-
age MaxSub scores for each method and data set
are shown in Table 3. The best predicted models
in each set were produced by a combination of the
new secondary structure prediction-based poten-
tial and the PSI-BLAST PSSM.

Fold recognition accuracy

Although a simple combination of the new local
potential with the PSI-BLAST PSSM improves
alignment accuracy and some aspects of fold
recognition accuracy, fold recognition accuracy is
further enhanced using a jury method. This
method is described in detail in Materials and
Methods, and outlined in Figure 4.

The Defay/Cohen test set contains 58 sequences
for which at least one structural match is present
in the fold library. Using the “one-to-many” test of
fold recognition accuracy, described in Materials
and Methods, the probability of finding a match
among the top N hits was calculated for several
scoring methods. Results for the PSI-BLAST
PSSM, a combination of the new local potential
with the PSI-BLAST PSSM, and the fold recog-
nition jury are compared in Figure 2.

While the PSI-BLAST PSSM correctly identifies a
matching fold as the top hit for 67% of the test
sequences, subsequent hits are less likely to ident-
ify correct matches. The chance of a correct fold
occurring anywhere among the top five hits is
74%, and the chance of a correct fold occurring
anywhere in the top 20 hits increases to only 82%.
The combination of the new local potential and
the PSSM is less accurate for the top hit (65% versus
67%), but more useful for finding a correct match

Table 3. MaxSub scores for models created from align-
ments using different scoring methods on the Defay/
Cohen (D/C) and Fischer/Eisenberg (F/E) test sets

Average

Scoring method D/C F/E

Identity 0.21 0.19
BLOSUM62 0.27 0.25
f/c 0.22 0.20
PSI-BLAST 0.28 0.29
f/c/PSI-BLAST combination 0.34 0.32
Correct alignments 0.49 0.49

Genome Annotation and 3D Modeling 839



among the top five hits (77% versus 74%) or top 20
hits (92% versus 82%). Potential users of the thread-
ing tool would presumably be most interested in
the accuracy of the first hit, or first several hits, as
further investigation of possible structural matches
might be conducted manually or with the help of
more specific and time-sensitive algorithms. There-
fore, the fold recognition jury was tuned to obtain
maximum accuracy among the top five hits. The
resulting accuracy for the top hit was 79% (versus
67% for the PSI-BLAST PSSM), and an accuracy
rate of 88% was obtained for the top three hits.
However, little additional benefit is gained from
examination of hits beyond the best three; the com-
bination of the PSSM with the new local potential
becomes more reliable when considering more
than 15 possible candidates.

Fold recognition tests were performed also on
the Fischer/Eisenberg benchmark set, using the
set of 68 matches supplied by Fischer as the correct
standard. As in other studies,7 matches containing
at least one common domain classified in the
same homologous superfamily in the CATH33

structural database were counted as correct, result-
ing in a total of 213 possible structural matches.
The PSI-BLAST PSSM identifies a matching fold
correctly as a top hit in 75% of the test sequences.
The probability of a correct match increases to
84% among the top five hits, and to 87% among
the top 20 hits. As with the Defay/Cohen bench-
mark set, the combination of the new local poten-
tial and the PSSM is less accurate for the top hit

(69% versus 75%), but more accurate when the top
five hits (85% versus 84%) or the top 20 hits (93%
versus 84%) are considered. The jury method is
more accurate than either of the other methods,
finding a match as the top hit for 76% of the
sequences, 93% in the top five, and 96% in the top
20. The jury method compares favorably with
other fold recognition methods tested on the same
data set. GenTHREADER7 finds a match as the
top hit for 74% of the sequences, with 82% in
the top five and 94% in the top 20. All sequences
in the Fischer test set were submitted to the
3D-PSSM server.9 Because the fold library could
not be controled and contained many of the test
sequences, results with more than 25% sequence
identity with the submitted sequence were
ignored. Folds returned by the 3D-PSSM server
were mapped to CATH superfamilies, allowing
an overlap of up to ten residues at each end of
the sequences. In cases where a single fold over-
lapped several CATH superfamilies, a match with
any of them was counted as correct. 3D-PSSM
found a match as the top hit for 65% of the
sequences, with 88% in the top five, and 96% in
the top 20. However, these results are not compar-
able directly to those reported for the jury method
or GenTHREADER, since the 3D-PSSM library is
larger than the Fischer fold library.

The complete jury method, including estimation
of fold recognition accuracy as described in
Materials and Methods, is implemented as a Java
application called Jthread, which also performs

Figure 2. Fold recognition accuracy. Using the “one-to-many” test of fold recognition accuracy, described in
Materials and Methods, the probability of finding a match among the top N hits was calculated for several scoring
methods.
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sequence alignment on potential structural
matches, using the optimal alignment parameters
described above. In addition to identifying a large
percentage of correct structural matches, a fold
recognition method is most useful for annotation
if it produces a low rate of false positives. JThread
was parameterized on the Defay/Cohen data set,
so all annotations on that set with estimated accu-
racy .99% were indeed true positives. On the
Fischer/Eisenberg data set, 58 structural matches
(representing 32 of the 68 sequences) were anno-
tated at confidence levels of .99%. Of these, three
matches (all immunoglobulins) initially appeared
to be false positives. However, two of the three
structures have been classified as immunoglobulins
in a more recent version (2.0) of CATH, and
assigned the same CATH code as the potential
matches predicted by JThread. A third protein
(PDB code 1PFC) remains unclassified in CATH.
Examination of the 1PFC structure and its headers
indicates that it is also an immunoglobulin
domain, as predicted by JThread.

LiveBench results

JThread was used to predict folds for a recent set
of LiveBench27 targets, to benchmark accuracy on
a set of structures that were all released after
development and parameterization of our algor-
ithm were completed. LiveBench Set 6 includes 98
sequence targets, and is pre-filtered to exclude
“easy” targets for which a similar PDB sequence
can be detected using BLAST. All targets, as well
as all proteins in the JThread fold library, have
recently been classified in SCOP version 1.63,
which allows accuracy to be benchmarked on the
basis of manual annotation by an expert. The struc-
ture 1IYA was superseded in the PDB by 1J3G,
which was substituted for purposes of this analy-
sis. JThread predicted 36 matches, covering 12
sequences, with .99% confidence. According to
SCOP, all 36 predicted folds were classified in the
same homologous superfamily as the correspond-
ing target protein. Predictions made at lower confi-
dence were examined. Of the top matches for 98
targets, 24 (24%) were in the correct superfamily,
and three more (3%) were in the correct fold but
different superfamilies, possibly indicating detec-
tion of analogous folds. When the top five predic-
tions for each target were examined, 28 targets
(29%) had at least one match in the correct super-
family, and ten (10%) more had matches in the cor-
rect fold but different superfamilies. Within the top
ten predictions, 33 (34%) were predicted in the cor-
rect superfamily, and 11 (11%) more were predicted
in the correct fold. Within the top 20 predictions, 39
(40%) were predicted in the correct superfamily,
and 15 (15%) more were predicted in the correct
fold. As these statistics were compiled on a set of
proteins assembled after the development and
parameterization of JThread, they give an unbiased
sampling of the accuracy of the algorithm in mak-
ing non-trivial predictions for newly sequenced

proteins. Unfortunately, due to time and memory
requirements of JThread, it is currently impractical
to provide a server that could participate in
ongoing LiveBench27 or EVA28 evaluations.

Mycoplasma genitalium genome

Mycoplasma genitalium (MG) is the smallest bac-
terial genome, with 480 predicted ORFs.34 It has
therefore been used to test several recently devel-
oped, fully automated methods for structural
annotation.19,35,36 We applied the pipeline method
described in Materials and Methods to this genome
to identify structural annotations for 270 (56.2%) of
the ORFs. However, as the first methods in the
pipeline are the local alignment algorithms BLAST
and PSI-BLAST, a significant number of annota-
tions covered only part of the sequence of the
corresponding ORF. For example, the ORF MG104
is 725 amino acid residues long, but only a single
domain of 72 amino acid residues could be anno-
tated as having significant structural similarity to
a known RNA-binding domain (PDB code 1SRO).
Nevertheless, 213 of the 270 annotations (78.8%, or
44.3% of the ORFs) accounted for at least 50% of
the sequence of the corresponding ORF. In total,
the structural annotations account for 78,265 of the
174,959 residues (44.7%) in the MG genome. If
short insertions (ten residues or fewer) are
included in these statistics, the numbers increase
to 217 annotations (80.3% or 45.2% of the ORFs)
covering at least 50% of the sequence of the ORF,
and 80,315 residues annotated (45.9%). All annota-
tions for MG are summarized on our web site†.

Of the 270 annotations, 112 (41.4%, or 23.3% of
the ORFs) were obtained using BLAST. An
additional 138 annotations (51.1% of the annota-
tions, or 28.7% of the ORFs) were obtained using
PSI-BLAST. The remaining 20 annotations (7.4%
of the annotations, or 4.1% of the ORFs) were
obtained using JThread. Although the number of
additional annotations that were found using
JThread (but not PSI-BLAST) was relatively small,
it included some annotations that were missed by
automatic application of BLAST and PSI-BLAST.
For example, three predicted ribosomal proteins
(MG155, MG161, and MG174) are over 60% identi-
cal with the sequences of the matching PDB struc-
tures. However, these matches were not found by
BLAST or PSI-BLAST, due to the low-complexity
filter used in these algorithms. Although a different
choice of BLAST parameters (eliminating the filter)
might have alleviated this problem, this would
likely have increased the potential for false posi-
tives. These cases illustrate the difficulty of setting
up a fully automatic annotation system, and the
importance of applying a pipeline procedure
including several different methods to the annota-
tion problem. We will discuss two additional
examples in more detail:

† http://www.cmpharm.ucsf.edu/~jmc/mg/
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ORF MG111: phosphoglucose isomerase

Phosphoglucose isomerase is a key enzyme in
the glycolytic pathway, and therefore likely to be
found in even the smallest bacterial genomes.
MG111 could not be annotated as related to a pro-
tein of known structure by either the BLAST or
PSI-BLAST algorithms. However, it was predicted
to have structural similarity to a structure of phos-
phoglucose isomerase (PDB code 1BOZ) by
JThread.

To assign functional as well as structural simi-
larity, it is important to verify conservation of
functionally important residues. Residues that are
conserved in phosphoglucose isomerase enzymes
from 42 different species were obtained from the
PROSITE database.37 A sequence alignment to the
enzyme structure and an estimation of the align-
ment accuracy were calculated as described above.
The resulting alignment is estimated to be over
88% accurate, and reveals complete conservation
of all 22 conserved residues from the PROSITE
motif. Therefore, the annotation of MG111 as phos-
phoglucose isomerase is fairly certain, and the
sequence alignment could be used to produce a
low-resolution model of the structure with hom-
ology modeling tools such as MODELLER.14 As
corroborating evidence that MG111 is phospho-
glucose isomerase, the same structural classifica-
tion is also made by the 3D-PSSM algorithm.9 This
prediction could be confirmed easily through bio-
chemical analysis.

ORF MG265: an enzyme with unknown function

MG265 is a conserved hypothetical protein with
unknown function. MG265 could not be annotated
as related to a protein of known structure by either
the BLAST or PSI-BLAST algorithms. However, it
was predicted to have structural similarity to a
domain from L-2-haloacid dehydrogenase (PDB
code 1QQ5, chain A) by JThread. This annotation
implies that MG265 forms a multi-domain struc-
ture including a Rossmann fold.

In this case, an accurate sequence alignment
could not be calculated (estimated alignment accu-
racy of only 27%), so a quantitative measure of the
conservation of functionally important residues
could not be determined. Furthermore, a reliable
model cannot be constructed without a more accu-
rate alignment. Structures containing a Rossman
fold are frequently enzymes that use the Rossman
fold domain to bind the substrate or a co-factor.38

However, in this case, the specific type of enzyme
cannot be determined without additional experi-
mental work.

Drosophila melanogaster genome

The fruit fly (Drosophila melanogaster) genome39

contains 13,608 predicted ORFs, comparable in
size to the 35,000–40,000 genes predicted for the
human genome.40 It is therefore a good benchmark

for annotation methods applicable to large eukary-
otic genomes. We applied the pipeline method,
resulting in structural annotations for 6717 (49.4%)
of the ORFs. Although the fraction of annotated
genes is similar to that for MG, the fly has a greater
proportion of genes for which the annotation covers
only part of the sequence of the corresponding
ORF. Only 2938 of the 6717 annotations (43.7% or
21.6% of the ORFs) accounted for at least 50% of
the ORF sequence, compared to 78.8% of the MG
annotations. In total, the structural annotations
account for 1,430,851 of the 6,600,557 residues
(21.7%) in the fly genome. These numbers may be
smaller compared to the MG because the fly con-
tains more long, multi-domain proteins (average
ORF length is 485 residues in the fly, versus 364
in MG), and no effort was made to annotate
additional regions of an ORF once one region had
been structurally annotated. It is possible that
because the MG genome is more compact, a larger
percentage of these proteins are conserved in
multiple species, and thus have a greater change
of homology to a protein that has been studied
and structurally characterized. A recent survey of
genomic ORFans (proteins with no detectable
sequence similarity to proteins in other genomes)
found no remaining ORFans in MG, but as many
as 33% in larger bacterial genomes.41 All annota-
tions for D. melanogaster are summarized on our
web site†.

Of the 6717 annotations, 2719 (40.5%, or 20.0% of
the ORFs) were obtained using BLAST. An
additional 2999 annotations (44.6% of the annota-
tions, or 22.0% of the ORFs) were obtained using
PSI-BLAST. The remaining 801 annotations (11.9%
of the annotations, or 5.9% of the ORFs) were
obtained using JThread. These numbers suggest
that the lower annotation rate in the fly relative to
MG is due to a greater number of remote homologs
or ORFans, rather than simply being the result of
longer proteins. BLAST and PSI-BLAST are local
alignment algorithms, and are capable of identify-
ing a single domain in a multi-domain protein.
However, the annotation rates for these algorithms
were both lower in the fly than in MG. JThread,
which uses a global alignment algorithm, would
be expected to miss some multi-domain proteins,
because the fold library contains only single
domains. However, the annotation rate for JThread
was over 40% higher in the fly, indicating a relative
abundance of remote homologs.

Common superfamilies annotated in
M. genitalium and D. melanogaster

All structural annotations were identified by
superfamily from the SCOP database (version
1.53). SCOP is a manually curated database that
aims to identify structural and evolutionary rela-
tionships between proteins of known structure.26

† http://www.cmpharm.ucsf.edu/~jmc/fly/
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The superfamilies most represented in structural
annotations of Drosophila and MG are summarized
in Table 4. The ten most common superfamilies
from each species are shown. Three superfamilies
occur in the top five rankings of each species. The
first, P-loop-containing NTP hydrolases, is a very
diverse family including kinases, G proteins,
motor proteins, and the ATP-binding subunits of
some transporters. This superfamily occurs 41
times in MG and 331 times in Drosophila. The
second superfamily, immunoglobulin-like domains,
occurs frequently in proteins attached to cell sur-
faces; it occurs six times in MG and 258 times in
Drosophila. Finally, the colicin superfamily is a
small family limited to a coiled-coil motif found in
several related toxins produced by Escherichia coli.
Despite the application of the low-complexity filter
(SEG) in combination with PSI-BLAST (see
Materials and Methods), many proteins from both
Drosophila and MG were annotated by PSI-BLAST
as having similarity to this domain. In a similar
study using PSI-BLAST to annotate MG genes, pro-
teins with coiled-coil regions were identified by
using a separate procedure specialized for detec-
tion of these regions.35 In the Müller et al. study,
the number of coiled-coil proteins in the MG
genome was estimated as four or five, compared
to the 16 found in MG by PSI-BLAST in this study

(325 such regions were found in Drosophila). There-
fore, the rate of false positives in this superfamily is
expected to be significant in both MG and Droso-
phila annotations.

It is interesting to observe common super-
families in MG that have not diverged significantly
in Drosophila. Four superfamilies occur among the
ten most common in MG, but have fewer than 20
members annotated in Drosophila. These include
the anticodon-binding domains of class I and II
tRNA synthetases (each of which has six annotated
members in MG, and ten or 11 annotated members
in Drosophila). Other superfamilies are a domain of
SRP/SRP receptor G proteins (five members in
MG and seven in Drosophila) and ribosomal frag-
ments (six members in MG and 15 in Drosophila).
The relative lack of specialization in these families
may indicate that the functions, while important,
are optimally performed by a small number of
proteins.

New predictions made by JThread

Of the 801 Drosophila annotations made by
JThread, 692 (86%) are predicted to be structurally
similar to proteins from SCOP families in which
no member is found by BLAST or PSI-BLAST. Of
the JThread annotations, 547 (68%) are novel at
the SCOP superfamily level, and 223 (28%) are
novel at the SCOP fold level. These predictions
cluster into 34 newly annotated folds, 58 new
superfamilies, and 86 new families. JThread anno-
tations showed greater structural diversity than
predictions produced by BLAST or PSI-BLAST.
Although JThread produced 12% of the Drosophila
annotations, 17% (86/515) of the SCOP families
were annotated only by JThread.

Examination of these new annotations reveals
some relative strengths and weaknesses of the
JThread and BLAST/PSI-BLAST algorithms. As is
the case with JThread annotations of MG, one of
the newly annotated groups of folds includes
structures similar to phosphoglucose isomerase
(PGI). One of these, CG8251, is 69% identical in
sequence with a structurally characterized PGI
from rabbit (PDB code 1DQR). Two other genes,
CG1345 and CG12449, are 38% identical in
sequence with a structurally similar enzyme, the
isomerase domain of glucosamine-6-phosphate
synthase (GLMS). All three of these contain PRO-
SITE motifs, suggesting conservation of function.
An additional 18 annotated sequences range from
10% to 24% identity with a known structure, but
functional conclusions cannot be drawn because
the expected accuracy of the sequence alignment
was too low (20–27%) to allow further modeling.
Another similarity to the MG annotations was the
discovery of two genes, CG3661 and CG14148,
with structural similarity to ribosomal protein L14;
sequence identity with the known structure ranges
from 33 to 39%. In both the PGI and ribosomal pro-
tein L14 families, the high degree of sequence
identity of annotated genes with known structures

Table 4. Common superfamilies annotated in Myco-
plasma genitalium (MG) and Drosophila melanogaster (Fly)

MG Fly

Superfamily descrip-
tion Rank Frequency Rank Frequency

P-loop containing
NTP hydrolases

1 41 2 331

ConA-like lectins/
glucanases

2 27 12 123

Colicin 3 16 3 325
Immunoglobulin 4 6 5 258
Nucleic acid-binding
proteins

4 6 58 23

Translation factors 4 6 58 23
Ribosome and ribo-
somal fragments

4 6 82 15

Anticodon-binding
domain of class I aa-
tRNA synthetases

4 6 100 11

Anticodon-binding
domain of class II
AaRS

4 6 108 10

FAD/NAD(P)-bind-
ing domain

10 5 32 45

Domain of SRP/SRP
receptor G proteins

10 5 140 7

Zn finger, C2H2 – – 1 336
Heme-dependent
peroxidases

– – 4 268

Trypsin-like serine
proteases

– – 6 244

Interferon-induced
GPB1, C-terminal
Domain

13 4 7 199

Protein kinase-like 33 1 8 195
L domain-like – – 9 191
Transducin, g chain – – 10 177
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suggests that sequence-based search methods such
as BLAST should be able to annotate the genes,
but were unable to for unknown reasons.

Proteasome predictions

An interesting example of a fold for which
BLAST and PSI-BLAST found no hits in Drosophila,
but for which JThread found numerous examples,
is the fold family containing proteasome a and b
subunits. In eukaryotic cells, most proteins are
degraded via the ubiquitin-proteasome pathway.42

The core of this pathway is a barrel-shaped proteo-
lytic core complex, the 20 S proteasome. This par-
ticle is composed of 28 subunits, two copies each
of seven a subunits and seven b subunits. Two
rings of b subunits are flanked by two rings of a
subunits, forming the barrel structure. Catalytic
degradation of proteins is performed by three of
the b subunits. Although much of the regulation
of proteasome catalysis occurs in a 19 S particle
that is attached at each end of the barrel, regulation
by selective expression of subunit isoforms is
known to occur. In mammals, an immune response
stimulates expression of three additional active b
subunits, each of which replaces a specific b sub-
unit from the original particle. This “immuno-
proteasome” is implicated in processing of
antigens for presentation by MHC class I mol-
ecules. In Drosophila, testes-specific isoforms of
proteasomes have been cloned; however, nothing
is known of their functional role.42 JThread identi-
fies 36 proteins from the SCOP fold family, which
includes proteasomes and similar hydrolases,
including 25 for which the expected alignment
accuracy with a known structure is 87% or better.
In some of these gene products, the catalytic resi-
dues are conserved; others are likely to be inactive
isoforms. The large number of genes suggests that
selective expression of active and inactive isoforms
of proteasome subunits may play a role in the
regulation of protein degradation in Drosophila.
Further modeling of the proteins and experimental
characterization of the expression patterns of these
genes may shed further light on this hypothesis.

Discussion and Conclusions

As the number of completely sequenced gen-
omes increases, there is a growing need for compu-
tational tools to aid in understanding the cellular
functions of the gene products. Determining the
three-dimensional structure of each protein is a
key step in acquiring a detailed understanding of
enzymatic reaction catalysis and the interaction of
proteins with small molecule ligands and other
proteins. Because computational modeling tools
require an accurate alignment of a new sequence
to a template protein with known structure, it is
important to develop tools that can calculate these
alignments accurately. We have shown that a
combination of existing sequence-based potentials

with a new local potential based on secondary
structure predictions creates a significant improve-
ment in alignment accuracy over current methods.
In addition, use of the JThread algorithm in a geno-
mic annotation pipeline reveals a significant num-
ber (5–10%) of additional annotations, many of
which could be used to produce structural models.

The pipeline method of genomic annotation
reveals several strengths and weaknesses of
JThread and other current methods. First, the size
of newly sequenced eukaryotic genomes demon-
strates the need for fast algorithms. JThread relies
on homologous sequences identified by tools such
as PSI-BLAST. Thus, the speed of the algorithm is
limited by the time required to apply PSI-BLAST
to a single protein. This currently averages about
ten minutes on a Pentium III class computer, or
about 100 days to test every protein in a typical
eukaryotic genome. Although multiple computers
can perform this computation in parallel, this
demonstrates that algorithms even a single order
of magnitude slower than PSI-BLAST could easily
become computationally prohibitive. Although
computational power is increasing, the number of
sequences and genomes to process may be increas-
ing at an even faster rate. Second, the pipeline
revealed several proteins that were identified only
by JThread, but that were similar enough to pro-
teins of known structure that sequence-based
methods would have been expected to identify
them. This problem reveals the difficulty of choos-
ing a single set of parameters in a fully automated
genome annotation method. Finally, the large num-
ber of coiled-coil and other non-globular proteins
identified by PSI-BLAST and JThread emphasizes
the need for filtering of these proteins early in
an annotation pipeline. Specialized computational
tools may be needed to identify these proteins,
which can create difficulty for algorithms tuned to
perform on water-soluble, globular proteins.

Predictions made by JThread should be of
special interest to biologists who have focused
their interest on modeling a particular protein of
unknown structure. Compared to other current
methods, JThread has a greater probability of
placing a true structural match high in a ranked
list of possible fold candidates. Even in cases
where a detailed annotation cannot be made by
any method, thorough examination and modeling
of several candidates, combined with expert
knowledge of a protein of interest, may lead to a
structural model.

Additional improvements to JThread are
expected in several areas. First, accuracy of the
algorithm could be increased through the use of
additional non-local potentials such as more accu-
rate inter-residue potentials or a potential that
explicitly evaluates the burial of hydrophobic
side-chains. Second, algorithms for secondary
structure and solvent exposure prediction should
continue to increase in accuracy as the number of
known sequences increases. In addition, structural
genomics initiatives should produce a more uniform
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sampling of the universe of possible protein folds
than is currently available in the PDB. This should
result in more cases where an impossible fold
recognition target becomes merely difficult. Finally,
use of a local alignment algorithm and additional
attempts to annotate small sections of a protein
sequence that were not annotated during the initial
evaluation should greatly increase the coverage of
annotated sequence space in existing genomes.

Annotations of D. melanogaster and M. genitalium
are available on our web site†.

Materials and Methods

Data sets

JThread was developed and tested on a library of 58
sequences and 305 folds used in a previous threading
study.21 Structures of all proteins were determined by
X-ray crystallography to at least 2.5 Å resolution. Struc-
tural matches were determined by the structural super-
position program MINAREA,43 using the same cutoff as
in the previous study (a ratio score of 0.2 or lower) for
assigning structural similarity. In order to mimic blind
structure prediction challenges, the true structures of
the 58 test sequences and their homologs (more than
25% sequence identity) were not considered. This pro-
cedure identified 126 structural matches, an average of
2.2 per sequence. “Correct” sequence alignments were
determined from the structural superposition, using
MINAREA. This procedure uses dynamic programming
between the template and target, based on the Ca–Ca

distances in the structural alignment, and does not
require gap penalties. The resulting alignment is filtered
to remove aligned residues with an inter-Ca distance
greater than 6 Å, and aligned segments shorter than two
residues.

Further testing was done using a library of 68
sequences and 301 folds introduced by Fischer &
Eisenberg,20 and commonly used to benchmark thread-
ing studies.7,10,24

Testing was performed on a set of 98 targets down-
loaded from the LiveBench27 server. Performance on
LiveBench Set 6, which was completed most recently,
was evaluated.

Genomic threading was carried out using all predicted
ORFs from M. genitalium and D. melanogaster, down-
loaded from‡. The M. genitalium genome contained 480
sequences, and the D. melanogaster genome 13,308. These
sequences were threaded against a fold library derived
from the ASTRAL database of protein domains,44,45 ver-
sion 1.50. The 30% identity subset was used, from
which proteins with incomplete structural information
were discarded. The resulting fold library contains 2123
folds from a diverse set of protein families.

Inter-residue pair potentials were used in the fold
recognition jury (described below). These were calcu-
lated using the method of Sippl,16 on the same non-
redundant database of 681 proteins used to train and
test the Pred2ary program.46 Potentials between Cb

atoms (Ca for glycine residues) were used.

Multiple sequence gathering

Multiple homologs for each protein used in the study
were obtained using PSI-BLAST4 version 2.0.7 and the
nr database of non-redundant sequences from NCBI
(downloaded 11/19/1999). All default options (0.001
e-value cutoff for inclusion of a sequence in the matrix
calculations, filtering turned on) were used, except that
the maximum number of rounds was set to 10. In cases
where the PSSM used by PSI-BLAST was required for
alignment calculations, this matrix was obtained using
the checkpoint feature of PSI-BLAST.

Secondary structure prediction

Secondary structure predictions for all proteins
threaded in the study were obtained using the Pred2ary
program.46 For each residue of every sequence, Pred2ary
predicts the probability of helix, strand, and coil. These
are normalized to sum to 1.0, and correspond well to
the actual probabilities when compared for large data
sets. For soluble, globular proteins, the largest of the
three probabilities corresponds to the correct secondary
structure with an average accuracy of over 75%; either
the first or second alternative is correct at 94% of the
positions.46 The “large” jury size was used for all predic-
tions. Both the Defay/Cohen and Fischer/Eisenberg
benchmark sequence sets contain proteins similar (more
than 25% identical) to proteins in the training sets used
to train some of the neural network jurors. Because
these networks would produce more accurate predic-
tions than could be expected in a truly blind test, they
were eliminated from the large jury during prediction of
the secondary structure of the proteins in question.
During genomic threading trials, sequences similar to
any protein of known structure (including those used
previously in the Pred2ary training sets) were pre-
filtered and annotated using BLAST or PSI-BLAST (as
described below).

Alignment method

All alignments were done using global dynamic
programming47 with an affine gap penalty.48 Unaligned
ends for both proteins being aligned were treated as
gaps and penalized accordingly. Penalties for gap open-
ing and extention were optimized individually for every
scoring method or combination of scoring methods,
using the non-linear optimization method described by
Hooke & Jeeves.49 This method is a heuristic search tool,
and therefore not guaranteed to find the global optimum.
However, it is very useful for optimization problems in
which the objective function (in this case, alignment
accuracy) is difficult to calculate directly from the para-
meters. In order to decrease the number of tunable para-
meters in the method and minimize the possibility of
over-adaptation to a particular data set, the parameters
were optimized using the Defay/Cohen data set, and
not re-calculated for different data sets.

Measurements of accuracy

Alignment accuracy for each method was calculated
by comparing the calculated sequence alignments to the
alignments generated by MINAREA from the structural
superposition. Percentage accuracy was determined by
dividing the number of correctly aligned residues in
the calculated sequence alignment by the number of

† http://www.cmpharm.ucsf.edu/~jmc/genomes/
‡ http://www.ebi.org
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residues aligned (to any residue, but not a gap) in both
the structural and calculated alignments. Alignment
sensitivity (ASNS) was also calculated, by dividing the
number of correctly aligned residues by the number of
residues aligned in the structural alignment. Because
the former measure is more sensitive than the latter to
the number of residues aligned in the dynamic program-
ming calculation, ASNS was used as the measurement of
accuracy when developing parameters for each method.

Several different levels of stringency were considered
when measuring alignment accuracy. At the most strin-
gent, or zero tolerance level, aligned positions had to be
identical in the calculated and structural alignments. At
the ^1 tolerance level, a shift of one residue in the calcu-
lated alignment was considered to be correct. Automated
structural alignment algorithms often differ at the zero
tolerance level, but agree at the ^1 threshold.21 A toler-
ance level of ^4 was tested also, corresponding to align-
ment differences of one helical turn. ASNS measured at a
non-zero tolerance level is denoted with the level used;
for example, ASNS1 indicates a ^1 tolerance level.

Fold recognition accuracy was measured by compar-
ing all folds in a library to a given sequence, and ranking
them according to a score calculated by a single method
or jury of methods (described below). We use the one-
to-many measure of successful fold recognition;35 a
sequence is considered to be recognized correctly if any
structural match is ranked as the top hit, regardless of
the rankings of other possible structural matches for
that sequence. Different methods are compared accord-
ing to the percentage of sequences for which a structural
match is ranked as the top hit. Because for many “real
life” fold recognition problems it is feasible to build and
examine several alternative models, we also calculated
the percentage of sequences for which a structural
match was found anywhere in the top N hits. For opti-
mizing the parameters of our method, it was desirable
to calculate a measure of accuracy that was very sensi-
tive to small changes in fold ranking. We therefore calcu-
lated the average rank of structural matches, and the
reciprocal weighted average rank. The reciprocal weighted
rank is useful in parameter optimization, because it
places more emphasis on improvements in the relative
rankings of structural matches that are already ranked
fairly highly, while lowering the importance of structural
matches that are ranked far down the list. However, we
consider both these calculated measurements to be of
less practical interest to users of the method than those
discussed previously.

Design of local backbone potential

An overview of the local backbone potential is shown
in Figure 3. The Pred2ary program46 predicts the prob-
ability of helix, strand or coil occurring at each position
in a sequence. At sequence position i, these probabilities
are denoted pi(Helix), pi(Strand), and pi(Coil), respec-
tively. The predicted secondary structure probabilities
were used to calculate the expected distribution of back-
bone dihedral angles for each residue in the sequence.
The expected distribution of dihedral angles is computed
for each residue using equation (1):

piðf;cÞ ¼ piðHelixÞ £ pðf;clHelixÞ þ piðStrandÞ

£ pðf;clStrandÞ þ piðCoilÞ £ pðf;clCoilÞ ð1Þ

The distributions pðf;clsecondary strÞ are constant, and
taken from a large, non-redundant set of known

structures.46 Because of their unusual dihedral angle
preferences, the distributions for Gly, Pro, and Asn resi-
dues are calculated separately; other residue types are
grouped into a single category. The expected f,c distri-
bution is unique to every residue, although it will be
identical between residues with the same secondary
structural probabilities and type. This distribution is
then transformed into an energy potential using the
quasichemical approximation,50 as shown in equation (2):

DGiðf;cÞ ¼ 2kT £ ln
piðf;cÞ

prefðf;cÞ

� �
ð2Þ

The reference distribution prefðf;cÞ is a frequency distri-
bution computed over all residues in the database, regard-
less of secondary structure. Because this potential is
scaled arbitrarily relative to other potentials, the kT factor
is ignored.

Combination of potentials

Scoring methods that can be used directly in dynamic
programming algorithms, such as residue identity-
based scoring matrices, and the local potential, were
simply added to each other in the dynamic program-
ming matrix. When multiple methods were combined,
each component was weighted with a single, normalized
coefficient. These coefficients were optimized manually.

Several scoring methods that rely on inter-residue pair
potentials (e.g. see Sippl16) cannot be applied directly in
the dynamic programming algorithm. Iterative double
dynamic programming methods have been used in
these cases for individual threading calculations. How-
ever, this approach would slow the algorithm sufficiently
to make genome-wide threading unfeasible. Scores for

Figure 3. Calculation of local backbone potential. The
Pred2ary program46 predicts the probability of helix,
strand or coil occurring at each position in a sequence.
These are used to calculate the expected distribution of
backbone dihedral angles for each residue in the
sequence, using equation (1). The expected distribution
is translated into a pseudopotential using equation (2).
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these methods were calculated only for alignments that
were created using dynamic programming with a differ-
ent scoring method or combination of methods.

Estimation of alignment accuracy

For some scoring methods, the average score (the
total score from the dynamic programming method,
divided by the number of aligned residues) was
observed to correlate well with the accuracy of the
alignment. Average scores were translated into esti-
mates of the alignment accuracy (such as estimated
ASNS1) using a method similar to that used for trans-
lating raw neural network output values into esti-
mated secondary structure probabilities in previous
studies.46 Scores from a set of known sequence/fold
pairs (the Defay/Cohen set) were used to parameter-
ize the method. The scores were sorted into 100
ranges of equal width, encompassing the entire set of
observed values. Because some ranges included only
a sparse amount of data (less than ten observed
values), these ranges were expanded symmetrically in
each direction until they included at least ten data
points. The average and standard deviation of align-
ment accuracy measures (such as ASNS0, ASNS1,
etc.) in each range were then measured, creating a
look-up table that translates observed scores into esti-
mates of alignment accuracy. Estimates of the accu-
racy of new alignments are looked-up from the table
according to the calculated average score; scores that
are outside the range in the table are assigned esti-
mated accuracy values corresponding to the nearest
score in the table.

Jury method for fold recognition

Optimal fold recognition accuracy was obtained using
a jury of multiple scoring methods, shown in Figure 4.
Each of eight jurors used a single scoring method or
combination of methods:

Juror 1. The scoring method used was the PSI-BLAST
PSSM obtained by using the protein sequence to be
recognized (the test sequence) as a probe against the nr
database, as described above in the section on Multiple
sequence gathering. Gap penalties that had been opti-
mized for alignment accuracy tests were used.

Juror 2. The scoring method used was a combination
of the local backbone potential and an averaged PSI-
BLAST PSSM. In alignment accuracy tests described
above, a combination of 70% local backbone potential
and 30% PSI-BLAST PSSM was found to be optimal, so
these weights and the associated optimal gap penalties
were used for this juror. The only difference between
the scoring scheme used here and that used in the align-
ment tests is that the PSI-BLAST PSSM contribution was
replaced with an average of PSI-BLAST PSSM scores
over multiple homologs of the fold sequence (gathered
using the multiple sequence gathering method described
above). Gaps in the latter alignment did not contribute to
the average score at each position. Because the number
of detected homologs was often large, this scoring
method was relatively slow compared to the other jurors.

Juror 3. This Juror is similar to Juror 2, except that the
alignments were computed using a combination of the
local backbone potential and an unaveraged PSI-BLAST
PSSM (exactly as in alignment tests). The resulting align-
ment was then scored using the same scoring method as

Figure 4. Fold recognition jury. Eight jurors use different scoring methods to evaluate the compatibility of a test
sequence with each fold in a fold library. The total score, average score, and Z-score for each sequence/fold/juror com-
bination are calculated as described in the text. These are combined into a single raw score for the sequence/fold com-
bination using equation (3). The raw score is then translated into an estimated probability of a sequence adopting a
given fold, as described in the text.
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that used by Juror 2. This resulted in an improvement in
computational speed relative to Juror 2.

Juror 4. Alignments were computed as for Juror 3,
and then scored using inter-residue pair potentials
calculated using the method of Sippl.16 The “frozen
approximation”51 was used: the score for placing a resi-
due from the query sequence at a given position in a
template fold was calculated relative to native residues
from the fold. No gap penalties were used in scoring
the alignments.

Juror 5. Juror 5 was the same as Juror 4, except the
same gap penalties used in calculating the alignments
were used in scoring the alignments.

Juror 6. Juror 6 was the same as Juror 4, except that the
frozen approximation was not used. The score for plac-
ing a residue from the query sequence at a given position
in a template fold was calculated relative to other resi-
dues from the query sequence that had been aligned to
different positions in the fold. Residues that had been
aligned to gaps did not contribute to the score.

Juror 7. Juror 7 was the same as Juror 6, except the
same gap penalties used in calculating the alignments
were used in scoring them.

Juror 8. Alignments were computed as for Juror 3, and
then scored using a combination of the potential used for
scoring Juror 2 and the potential used for scoring Juror 7.
The scoring potential for Juror 8 contained equally
weighted contributions from the two scoring potentials
used by Jurors 2 and 7.

Combination of jury scores

As shown in Figure 4, each Juror scores a given
sequence against all folds in a fold library using its scor-
ing method as described above. For every combination
of sequence, fold, and Juror, the total score, average
score (total score divided by the number of aligned resi-
dues), and Z-score are calculated. The Z-score is calcu-
lated from the total score, relative to the ensemble of
scores produced by the same sequence and Juror, against
every fold in the fold library. The Z-score measures the
number of standard deviations the total score is below
the mean score of the ensemble. For every sequence and
fold pair, the total, average, and Z-scores contributed by
each Juror are combined linearly to produce a single
raw score for the pair, as shown in equation (3):

rawðseq; foldÞ

¼
X

jurors

½wi £ totalðseq; fold; jurorÞ

þ wiþ1 £ averageðseq; fold; jurorÞ

þ wiþ2 £ Zðseq; fold; jurorÞ� ð3Þ

A linear, weighted, combination was used instead of a
more sophisticated method (such as a neural network)
in order to limit the number of tunable parameters of
the method and to facilitate interpretation of the results.
In addition, many of the weights were set to zero in
order to limit the complexity of the method. Our optimal
jury of eight methods used only 17 non-zero parameters,
out of a possible 24 (8 £ 3).

The jury weights were optimized in several steps,
using the Defay/Cohen data set. Initial weights were
solved via least-squares, with the desired raw score for
each sequence/fold combination set to the MINAREA
ratio score from the structural superposition. As a lower

MINAREA ratio score represents a closer structural
match, sorting the list of folds according to the raw
scores from the initial round of optimization should pro-
vide some initial separation between the structural
matches and non-matches. However, to achieve greater
accuracy at separating matches from non-matches, direct
optimization towards this goal was necessary. All 24
weights were further optimized using the method of
Hooke & Jeeves.49 The reciprocal weighted average rank-
ing of the structural matches was used as the objective
function. This function was useful because it is sensitive
to small changes in ranking, and because improvements
in ranking among low-rated sequence/fold pairs are
given more weight than improvements in ranking
among other pairs.

In order to limit the complexity of the method, an
iterative procedure was used to eliminate some of
the weights (setting them to zero). Starting from the
initial set of N converged weights, each was set in
turn to zero, and the remaining N 2 1 weights were re-
optimized using the same objective function. The set of
N 2 1 weights resulting in the lowest value of the objec-
tive function was retained as the initial set of weights
from which to begin the next round of elimination. The
best set of weights from each round was further opti-
mized towards an objective function that we thought
would be more relevant to the protein modeling com-
munity. For each sequence, folds are sorted according
to the raw scores, and the total number of structural
matches among the top five hits was calculated; this
value was maximized as an objective function. We
found that seven of the initial 24 weights could be
eliminated without reducing this objective. After that,
further elimination of weights resulted in a decrease in
the metric. Therefore, the set of 17 weights that produced
the maximum number of structural matches among the
top five hits was used by the fold recognition jury. The
final 17 weights are available from the authors upon
request.

Raw scores produced by the jury are translated into
estimated probabilities that a sequence/fold pair is a
structural match using a method similar to that used to
produce estimates of the alignment accuracy. A look-up
table translating raw scores into structural match prob-
abilities was created using the raw scores from the
Defay/Cohen data set. Raw scores were grouped into
100 bins ranging from the minimum to maximum value
of the score. To correct for sparse data, the width of
each bin was allowed to expand until each contained at
least ten data points. The probability of finding a struc-
tural match in each bin was then measured. Raw scores
for new sequence/fold pairs are translated into approxi-
mate probabilities of being a structural match using the
table.

Genomic threading

ORFs from genomic data are annotated using a pipe-
line of programs. First, the BLAST program3 is used to
search for hits against pdbaa, the BLAST database of
sequences from the current release of the Protein Data
Bank52 of solved structures. This is a very fast procedure,
requiring several seconds of CPU time per ORF on a
modern workstation (800 MHz Intel Pentium-III).
Sequences for which BLAST produces a hit with an
e-value of less than 1024 are annotated and excluded
from further processing. This should correspond to an
error rate of about 1 in 10,000 annotations.
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The second round of searching uses the more sensitive
tool, PSI-BLAST.4 The PSI-BLAST program is run twice
per ORF. In the first run, the nr database of non-redun-
dant sequences is used in order to create a PSSM and
gather multiple sequences. All default options (0.001
e-value cutoff for inclusion of a sequence in the matrix
calculations, filtering turned on) were used, except that
the maximum number of rounds was set to ten. In the
second run, the PSSM from the first run is used to per-
form a search in the pdbaa database, with only a single
round of searching. Any hits with e-values of less than
1024 are collected as annotations. Although this e-value
implies an error rate of 1 in 10,000, a study of the true
error rate of PSI-BLAST35 found the error rate corre-
sponding to e-values of 1024 to be higher, of the order of
1 in 100. The processing time for this second round of
searching is more significant, requiring approximately
ten minutes, on average per ORF on a standard desktop
machine.

The set of aligned sequences gathered using PSI-
BLAST in the second round is used as input to
Pred2ary46 to predict the secondary structure of the
unknown sequence. Along with the PSSM obtained in
the second round, this is sufficient data to apply the
jury threading procedure using the fold library obtained
from the ASTRAL database (described above). For folds
with non-zero estimated probabilities of being a struc-
tural match, a sequence alignment is also calculated.
The resulting probabilities and alignments are stored in
a database for later retrieval and analysis. All possible
structural matches with an estimated probability of
greater than 99% are annotated.
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