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Abstract

Background: Many organizations face challenges in managing and analyzing data, especially when relevant datasets arise from mul-
tiple sources and methods. Analyzing heterogeneous datasets and additional derived data requires rigorous tracking of their inter-
relationships and provenance. This task has long been a Grand Challenge of data science and has more recently been formalized
in the FAIR principles: that all data objects be Findable, Accessible, Interoperable, and Reusable, both for machines and for people.
Adherence to these principles is necessary for proper stewardship of information, for testing regulatory compliance, for measuring
the efficiency of processes, and for facilitating reuse of data-analytical frameworks.

Findings: We present the Contextual Ontology-based Repository Analysis Library (CORAL), a platform that greatly facilitates adher-
ence to all 4 of the FAIR principles, including the especially difficult challenge of making heterogeneous datasets Interoperable and
Reusable across all parts of a large, long-lasting organization. To achieve this, CORAL’s data model requires that data generators ex-
tensively document the context for all data, and our tools maintain that context throughout the entire analysis pipeline. CORAL also
features a web interface for data generators to upload and explore data, as well as a Jupyter notebook interface for data analysts, both
backed by a common API.

Conclusions: CORAL enables organizations to build FAIR data types on the fly as they are needed, avoiding the expense of bespoke
data modeling. CORAL provides a uniquely powerful platform to enable integrative cross-dataset analyses, generating deeper insights
than are possible using traditional analysis tools.
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One of the Grand Challenges of data science is to facilitate knowl-
edge discovery by enabling datasets to be readily analyzable both
by humans and by machine learning algorithms. In 2016, a diverse
group of stakeholders formalized a concise and measurable set of
principles, called FAIR, to increase the utility of datasets for the
purpose of knowledge discovery [1]. The 4 principles of FAIR are
Findability, Accessibility, Interoperability, and Reusability. Findabil-
ity means that data are assigned stable identifiers and properly
indexed. Accessibility means the data are easily retrievable by peo-
ple authorized to have access. Interoperability means the data are
clearly documented using a formal language, in order to facilitate
integrated analyses that span multiple datasets. Reusability means
the data are documented sufficiently well that datasets may be
used by people other than the original data generators and that
the provenance of all data is clear.

The problems of making an organization’s data Findable and Ac-
cessible to its members are largely solved by modern databases,
including relational databases such as SQL [2] and nonrelational
“NoSQL” databases such as document stores [3]. The challenges
of assigning a unique, permanent ID to each dataset generated
within an organization, and then ensuring that the dataset is de-
posited into a database where it may be retrieved by appropri-
ate people, are largely managerial problems rather than technical

ones. On the other hand, making data both Interoperable (enabling
powerful integrated analyses that span many datasets generated
by different teams within an organization) and Reusable (enabling
later use of datasets by somebody other than the person or team
that originally generated the data) is extremely difficult, as we de-
tail below.

The FAIR stakeholders recognized that a number of public
databases for specialized data types have formatting standards
that mandate rigorous formal documentation of each deposited
dataset and its provenance and that this requirement is suffi-
cient to ensure both Interoperability and Reusability [1, 4]. However,
this is not the case for general-purpose datasets (i.e., data types
for which rigorously defined formatting and formal documenta-
tion standards have not been developed). Reusability is challeng-
ing for general-purpose data because nonspecialized data storage
formats often do not allow or require specification of key details,
even basic ones such as units of measurement. As a result, un-
documented assumptions and conventions can make it very diffi-
cult to reproduce or reuse data. This has produced a reproducibil-
ity crisis within the scientific research community [5, 6]. Non-
reusable data are also very costly: life sciences researchers in the
United States alone are estimated to spend over $28 billion each
year on irreproducible preclinical work [7]. Ensuring Interoperability
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Figure 1: Trade-offs between adherence to FAIR principles and the ease
with which new data types can be added to a platform. More rigorous
formal definitions of data types facilitate higher degrees of
Interoperability and Reusability, but at the cost of a higher degree of
difficulty in adding new data types to the system.

between datasets is challenging for many of the same rea-
sons: when different groups within an organization produce data,
impedance matching must be done in order to perform an inte-
grative analysis. Some sources of impedance are differing units,
incompatible scaling or normalization of different datasets, and
different identifiers used by different groups to refer to the same
objects.

The DOE Systems Biology Knowledgebase (KBase) is an open-
source software and data platform that facilitates data sharing
and integrated analyses of microbial and plant data [8]. KBase de-
fines a large number of data types relevant to such datasets, and
each of these data types is formally defined in sufficient detail
to ensure compliance with FAIR principles. KBase also provides a
Software Development Kit (SDK) that allows users to rapidly im-
port new tools and algorithms into the system. However, the SDK
does not currently allow custom data types, and development of
new data types is a relatively labor-intensive process that must be
done by KBase developers rather than end users [8]. This process
of defining new data types is analogous to developing or extend-
ing SQL schema: each type must be carefully designed to handle
multiple use cases and must integrate with other data already in
the system.

In contrast to KBase, the Galaxy platform [9], also popular
among microbial and plant researchers, uses a data model in
which files uploaded by users are not validated or parsed in any
way. Thus, both Galaxy developers and users can easily introduce
new data types into the system to support new tools and algo-
rithms. However, because files in Galaxy are stored without formal
type validation—analogous to documents in a NoSQL database—
they are not required to comply with any standards for documen-
tation beyond what is required to successfully run a single tool
or algorithm. Thus, the benefit of rapid development in Galaxy
comes at the cost of Interoperability and Reusability. These trade-
offs are illustrated in Fig. 1.

In practice, most data types can be represented using a small
number of data models, such as arrays, graphs, trees, and hash ta-
bles. We surveyed hundreds of data types used by our colleagues
in the ENIGMA project, a large consortium of researchers who

study how communities of microbes interact with their environ-
ment (https://enigma.lbl.gov/). We discovered that the vast ma-
jority of data, from raw assays to processed results, can be repre-
sented as multidimensional arrays of scalars. We believe that this
result is generalizable across many fields of research and busi-
ness and not just true for ENIGMA. For example, climate model-
ers widely use the xarray library for storing data in multidimen-
sional arrays, in which key-value pairs are used to label each di-
mension [10]. Similar libraries for handling labeled multidimen-
sional arrays exist in most computer languages, and file formats
such as HDF5 [11] and NetCDF-4 [12] are well-supported, mature
technologies. However, a common file format alone is not suffi-
cient to ensure adherence to the FAIR principles of Interoperability
and Reusability: in addition to a standard file format, all data, di-
mensions, and units in these multidimensional arrays must also
be formally and rigorously documented. Current state-of-the-art
tools such as the CEDAR Workbench [13] greatly facilitate formal
documentation of metadata describing entire datasets but do not
readily allow documentation of components such as dimensions
and variables. Likewise, Common Data Element (CDE) standards
as specified in ISO 111179 [14] have been in use at the National
Institutes of Health for over a decade [15] but are not applicable
to internal components of data structures.

In this article, we describe the Contextual Ontology-based
Repository Analysis Library (CORAL), a novel framework for data
modeling and analysis, which aims to achieve an optimal balance
between the ease of adding new data types and adherence to FAIR
principles.

Findings
An overview of the CORAL data model is shown in Fig. 2, and fur-
ther details are provided in subsequent sections. Our approach to
modeling data enables new complex data types to be defined on
the fly by users, thus avoiding high maintenance costs, but it also
ensures that such data types are documented in the formal and
rigorous manner that is necessary for Interoperability and Reusabil-
ity of all data.

Microtypes and self-validated contextons
Formal documentation of data means that all data types are de-
scribed using a limited vocabulary, in which all terms are clearly
defined [1]. To ensure that users document all data in a formal
way, CORAL data types must be built using a predefined set of
building blocks, which we call microtypes.

Microtypes are atomic data types representing a simple con-
cept relevant to a domain of interest (e.g., a gene name, an experi-
mental parameter such as carbon source, or measurements such
as optical density or pH). In contrast to complex data types, each
microtype should correspond to a conceptual element that can be
represented in a single scalar variable. Microtype definitions com-
prise a unique name, a formal definition of the data type, custom
validators, allowed scalar types, and (if applicable) links to other
data types. A well-chosen set of microtypes gives users the free-
dom to model all data types relevant to a domain of interest and
limits ambiguity by restricting the ways in which context can be
described to this defined set.

While each microtype defines a concept, additional informa-
tion is needed every time the microtype is instantiated. In addi-
tion to the value of the scalar type, the units in which the value
is defined provide another piece of critical context. We call this
trio (the microtype, its value, and the unit of measurement) a
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Figure 2: (A) To rigorously document context for all data, we introduce the concept of a “contexton,” or unit of context. Contextons are built using
“microtypes,” which we define as atomic data types representing a simple concept relevant to a domain of interest. Both rely on ontologies, which
define a controlled vocabulary for describing this domain. Together, the microtypes and ontologies defined for a particular instance of CORAL
represent a language that allows users to formally describe all data in that instance in a way that is both Interoperable and Reusable. (B) Dynamic data
types, which make up the vast majority of data in a CORAL instance, are defined by the users of the system as needed. These types are built by
combining commonly used mathematical data structures with contextons. A limited number of static core types, which are fully specified traditional
data structures, are also built using contextons in order to ensure Interoperability with the dynamic data. These static core types include the system
type Process, which is a special core type needed to document the provenance of each data object in a CORAL instance. (C) All static and dynamic data
in a CORAL instance are referenced in an object graph, where nodes are static or dynamic datasets, and edges are processes. This graph formally
annotates the provenance of all data.

contexton, or an atomic unit of context. One or more contextons are
required to provide formal context to all data in CORAL. Because
the microtype on which a contexton is based includes a validator
and a limited set of possible units of measurement, contextons
are self-validating (i.e., the validity of all data in contextons may
be confirmed independently of the contexton’s role within larger
data structures).

To provide a formal definition of all parts of a contexton, we
make extensive use of controlled vocabularies of ontological terms
[16, 17]. Requiring a controlled vocabulary has several advantages:
synonymous concepts can be collapsed into a single ontological
term, and errors due to misspellings are eliminated. Both the mi-
crotype names and the units of measurement are required to be
ontological terms, rather than free text. We recommend the use
of ontological terms rather than text strings as contexton values,
where possible. Designers of microtypes should endeavor to use
community standard ontologies wherever possible.

The relationship between contextons, microtypes, and ontolo-
gies is shown in Fig. 3.

Static and dynamic data types
The most FAIR data models require data scientists to completely
specify detailed schema for all types of data within an organiza-
tion, and the links between data types, before new data types can
be deployed. This process is often slow and expensive to imple-

ment, especially as data types are added or modified over time,
and is therefore impractical for dynamically evolving systems. In
CORAL, one key design principle was to provide similar Interoper-
ability and Reusability as the fully specified schema approach, but
without these barriers to adding new data types.

We achieve this goal by dividing data types into 2 classes: static
core types that are fundamental to an organization’s business or
science domain, and thus will remain largely unchanged over
time, and dynamic types that may be rapidly defined as needed.
In practice, only a small fraction (∼10%) of data types need to be
statically defined. These static core types must be defined in ad-
vance, with the associated development costs, but as fundamen-
tal types they should not need to be redefined significantly as an
organization evolves. Dynamic types, which make up the vast ma-
jority of data types, are defined by the users of the system on the
fly, with much lower development costs.

Static core types
Static core types are complex objects that are fundamental to the
domain of an organization. Each static type is defined as a set of
contextons, as shown in Fig. 4.

In this example, we define a static core type, Well (i.e., a ground-
water well that is a location in which ENIGMA collects field sam-
ples) using a number of microtypes. Although a single Well may
be represented by a set of scalar contextons, the set of all Wells
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Figure 3: A microtype is an atomic variable representing a single concept relevant to the field of interest, typically one that can be described using a
single scalar value and (where applicable) a unit of measurement. Both the microtype names and units of measurement are required to be ontological
terms. As part of the microtype definition, values must be constrained to be a simple scalar type, an ontological term, or a reference to a data object. A
contexton is an instantiated microtype, in which the value and units are specified.

in a CORAL instance is represented by a set of 1-dimensional
contextons. This is somewhat analogous to a single table in SQL,
except that in CORAL, the use of contextons allows all data to be
self-validated and relevant units to be specified.

Dynamic types
Dynamic data types are most often used for data related to the
core types, such as measurements taken on core objects. Dynamic
types are defined by combining a limited number of simple, math-
ematical data structures (e.g., matrices, trees, graphs) with con-
textons that provide critical context to the data, in order to allow
users to build a large number of rich, complex data types on the
fly. Contextons are used to provide formal context to all parts of
the mathematical data structure: each axis, the values, and the
object as a whole, resulting in a new dynamic data type. Individ-
ual instances of dynamic types (i.e., individual datasets) are called
Data Bricks. An example is shown in Fig. 5.

As discussed above, we found that the mathematical data
structure most relevant to ENIGMA data is the multidimensional
array. Our first implementation of dynamic types is therefore
based on mathematical N-dimensional arrays (NDArrays), but the
same approach can be applied to support other mathematical
types such as trees or graph structures.

Our NDArray data type is designed to model a homogeneous
N-dimensional matrix of data, meaning that all the data in the
matrix have the same scalar type and units of measurement. Con-
textons are required to provide context in 3 places:

1. Overall context for the data matrix. The mandatory mi-
crotypes Data Category and Brick Name are used to specify
the overall type of data (chosen from an ontology of data
categories defined by the instance administrators), as well
as a unique name for each dataset. Additionally, each data
brick is assigned a permanent Brick ID when it is stored in the
system. Additional contextons that provide context for the
data object as a whole (e.g., the instrument used or the ex-
periment date) are optional. Note that contextons that pro-
vide context for the entire matrix are similar to CDEs; there-
fore, microtypes that are compatible with relevant commu-
nity standards should be included in the set of microtypes
defined by the administrators of a CORAL deployment.

2. Context for each dimension in the matrix. Each dimension
has a mandatory microtype, Dimension Type, to specify what
varies along that dimension. Like Data Category, dimension
types must be chosen from an ontology of allowed types de-
fined by the instance administrators. Each dimension must
contain 1 or more contextons, each of which describes a
single variable that varies along the corresponding dimen-
sion. These contextons usually correspond to the indepen-
dent variables in an experiment. Each contexton contains a
1-dimensional array of values, with 1 value for every point
along the axis of the dimension. All values within a con-
texton must have the same units; the contexton also in-
cludes a single ontological term documenting the units of
measurement.
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Figure 4: Definition of the static core type “Well”—a location in which environmental samples are taken by ENIGMA field researchers. A number of
attributes, such as the name, biome, latitude, and longitude, are relevant to describing each well. Well names are free text, but the biome must be
chosen from among a collection of biome terms described in the ENVO ontology. Microtypes are used to ensure that each well’s latitude and longitude
are specified in degrees.

3. Context for the data values. The values themselves are
stored as N-dimensional contextons, which specify the mi-
crotype (what is being measured) and the units of measure-
ment. To accommodate heterogeneous data measured un-
der the same conditions, our data model allows multiple sets
of homogeneous data values within the same NDArray. Al-
though all such datasets must have the same dimensions,
each can include data with a different microtype and units
of measurement. These contextons usually correspond to
the dependent variables in an experiment.

Each dimension in the NDArray must be labeled by at least
1 contexton. The microtype for this contexton may be the same
as the overall Dimension Type. To provide a rigorous formal defini-
tion of the data object, the contextons that describe dimensions
should be restricted by instance administrators to an informative
subset of microtypes. Microtypes that link to core types are in-
cluded in this set. Other microtypes, such as “comment” (a free
text string), are not allowed as dimension contextons in the ab-
sence of other informative microtypes, because they do not for-
mally document the data.

It is up to the data generator how best to model their data using
this system: for example, a 2-dimensional NDArray with 2 con-
textons describing each dimension could also be represented as a
4-dimensional NDArray, with 1 contexton along each dimension.
Often, this decision reflects experimental design: if factorial de-
sign is used, it usually makes sense for each independent variable
to be a single dimension; on the other hand, if a sparse subset of

conditions is chosen in the experiment, it may be more convenient
to combine several independent variables into 1 dimension. Null
values (representing sparse datasets or missing data) are allowed.

Data provenance
Dynamic type definition is a powerful tool that introduces free-
dom and flexibility to the system. However, at the same time, it
can result in isolated “data islands” where data are not sufficiently
well documented to determine their provenance (i.e, the inputs
and methodology used to produce data). A second key design prin-
ciple of CORAL is all data must be linked in a network that for-
mally annotates the provenance of these data. This is important
both for Findability, as datasets that are unrelated to other data in
the system may be difficult to find, and also because storing the
complete provenance of each object is a key aspect of Reusability.

We achieve this goal by requiring that all data objects in CORAL
must be linked to core types, either through direct references to
core objects or to another dynamic object that ultimately links
to a core object. Links between static and dynamic data types are
created via the reference mechanism implemented in microtypes,
since the same microtypes are used to build context in both static
and dynamic data. This concept is similar to foreign keys in SQL.
All static and dynamic types are linked in a directed graph, in
which the edges document the processes by which one data type
is derived from another. Thus, the core types form a “backbone”
to which all data must be anchored, and the provenance of every
object in the system is clear.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac089/6762021 by U

niversity of C
alifornia Library - Berkeley Library user on 09 January 2023



6 | GigaScience, 2022, Vol. 11, No. 1

Figure 5: Definition of a dynamic data type to describe the results of a fitness assay. The first dimension specifies the conditions under which
researchers measured fitness values of different genes. The second dimension might specify genes, while a third dimension might specify replicates.
Because particular fitness datasets may have any of these dimensions or more, they are more readily modeled as dynamic datasets rather than as
static core objects.

In conclusion, the CORAL data model ensures that data meet
all 4 of the FAIR principles. Data are Findable by searching for onto-
logical labels as well as links to other data and Accessible because
all versions of all data, microtypes, and ontologies are given per-
manent IDs and stored in an underlying document store. Our fo-
cus on baking Interoperability and Reusability into our data model
greatly facilitates adherence to these principles as well, with-
out the design overhead of prior general-purpose data modeling
approaches.

Functionality
In addition to storing data, CORAL’s design enables rich func-
tionality to make the system useful for data analysis, visualiza-
tion, and managerial oversight. Major features are described in
the Methods section. They include a user-friendly upload wiz-

ard that guides data providers through the process of formally
documenting and uploading datasets, without needing to master
technical details such as ontological terms; a powerful search en-
gine that can find datasets according to their provenance as well
as searching the contents of the dataset; a plotting wizard that
allows nontechnical users to visualize their datasets using plot
types that are relevant to the dimensionality of the dataset; a re-
mote data access API; and a management dashboard that gives an
overview of all data in the system and allows users to drill down
to explore particular datasets of interest. CORAL also includes a
Python API to enable powerful computational analyses of datasets
in Jupyter notebooks [18]. This API provides access to the search
engine, retrieves individual datasets and their provenance, sim-
plifies merging of linked datasets to perform integrative analyses,
and automatically tracks the provenance of datasets as computa-
tional operations (e.g., dimension reduction, clustering, and data
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transformation) are applied to them. Details of these features are
provided in the Methods section, and examples of the User Inter-
face (UI) are shown in the supplementary information.

Discussion
For most fields of business or research, information typically flows
between 3 groups: from data generators who create data, to data
scientists who analyze the data, and to results consumers who use
the analyses created by the data scientists in order to make deci-
sions. In ENIGMA, data are generated by wet labs and analyzed by
computational biologists, and the results are used by project man-
agement to plan future experiments. Each of the 3 groups has its
own language—terms that are critical to documenting data in a
Reusable and Interoperable way. Data scientists who perform analy-
ses typically are more concerned about the mathematical content
of the data than about preserving the context provided by the data
generators, so conventional tools for data analysis (e.g., R, pandas)
focus on the numeric data structure and often lose context.

A benefit of the CORAL data model is that it requires that all
context be formally documented by data generators, and it also
ensures that this context is not lost during data analysis. Lower-
level libraries typically used by data scientists make it easy to
lose such context, but CORAL ensures that such context is main-
tained throughout the data analysis pipeline. Maintenance of
context throughout the entire information processing pipeline is
critical for the end users of the data (results consumers) to make
informed and correct decisions. Users in particular fields of busi-
ness can build custom solutions that maintain relevant context,
but CORAL is a drop-in solution for each industry, once the ontolo-
gies and microtypes relevant to that field are chosen or created.

Choosing an appropriate set of microtypes to describe all data
in a CORAL instance is analogous to choosing a language for that
instance and must be done by instance administrators prior to up-
loading data. Additional microtypes can be added to an instance
as needed, for example, if additional types of measurements will
be performed. Microtype names as well as other ontological terms
are arranged in hierarchies, with more specific types and terms
linked to more general concepts. Well-designed microtypes and
ontologies provide a single controlled vocabulary term to describe
a synonymous group of concepts, thus limiting ambiguity. Re-
quiring all contextual labels to be built from contextons rather
than free text also eliminates the possibility of errors due to
misspelling.

The CORAL approach of building complex data types dynami-
cally using a limited number of mathematical data structures la-
beled with contextons has several additional benefits:

� The number of mathematical data models is small, and thus
many tools and libraries can be implemented in a “generic”
way, so that each can operate on many data types in the sys-
tem. For example, tools to analyze or visualize matrix data
could operate on all complex data types that are fundamen-
tally matrices. This is an advantage even over the approach of
using fully specified schema for each data type, as such data
types are heterogeneous and thus require custom tools.

� Any user (not just “power users,” such as instance administra-
tors) can add new ad hoc dynamic data types to the system.
This is possible because the microtypes and ontologies de-
fined by instance administrators act as a common language
for each CORAL instance. Much of the design cost (e.g., data
validation) is already built in at the microtype level. Users can
construct an enormous variety of complex data types from a

few simple, mathematical data models and well-defined con-
textons, analogous to the enormous variety of objects that
can be built out of LEGO bricks.

� Complex dynamic data types made using our model are read-
ily understandable to end users, compared to fully specified
schema. Once users are familiar with the language (set of mi-
crotypes and ontological terms) used on each instance, the
limited number of mathematical data structures underlying
our complex types makes the data easy to grasp and thus im-
proves Reusability. Furthermore, by allowing users to define ad
hoc data types as needed, users can store their data in a for-
mat that more naturally reflects their experimental design,
rather than shoehorning data into rigidly specified predefined
schema.

In conclusion, CORAL is a framework that organizations can
use to rapidly deploy a powerful, integrated database to catalog,
store, and analyze all their data. Large organizations typically gen-
erate or use hundreds of types of data, each with a different, often
customized, format, including slightly differencing variations on
the same data types (e.g., a time series vs. a condition series or
with vs. without replicates). The traditional method of building
a bespoke system for data management is time-consuming and
expensive, requiring a team of data scientists and database ex-
perts. CORAL enables an organization to easily create and reuse
templates that capture the unique aspects of each of their hun-
dreds of data types while also clustering conceptually similar
types in order to organize the data and make them easy to under-
stand. Together, these features provide a uniquely powerful tool
to enable integrative cross-dataset analyses, generating deeper in-
sights than are possible using traditional analysis tools.

Methods
Details of microtype structure
Each microtype has the following properties:

� Name—(required) name for this microtype; must be an on-
tological term, which is unique within a particular CORAL
instance.

� Description—(required) a formal definition for this microtype.
It should not include units; those are provided by a separate
“unit” part of each contexton.

� Scalar type—(required) microtype values are restricted to a
single scalar type. For example, values for a microtype such
as “Concentration” could be restricted to being floating point
numbers. Values for a microtype such as “Chemical” could be
restricted to being ontological terms.

Use of ontological terms rather than strings as a scalar type
for values is highly recommended for 2 reasons. First, as with
the ontology of microtype names, collapsing synonyms into a sin-
gle term eliminates ambiguity. Second, using ontologies as scalar
types enables a powerful form of data validation (e.g., the designer
of a data type may require that a user populate a field by choosing
between a limited set of possible ontological terms).

For scalar types that are numeric, the microtype designer must
specify options for valid units of measurement. As described be-
low in “Details of contextons,” units must be specified as ontologi-
cal terms. The microtype designer may also specify 1 or more par-
ent classes of ontological terms as valid units (e.g., “concentration
unit”) in order to assert that all child terms (e.g., “mg/ml”) in the
ontology are valid units for the microtype.
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� Validator—(optional) allows designers to limit the allowed
values for this microtype. For example, a string could be re-
quired to match a particular regular expression, a numeric
type could be input to a function to determine its validity (e.g.,
to restrict values to nonnegative numbers), and ontological
terms are restricted to particular ontologies or parts of onto-
logical hierarchies. For example, a “chemical” microtype may
be defined so that its allowed values are ontological terms
from the Chemical Entities of Biological Interest ontology [19].

� Synonyms/aliases—(optional) synonymous terms for this mi-
crotype. This facilitates mapping of input data to microtypes
while limiting ambiguity in contextual descriptions. For ex-
ample, “ASV,” “ESV,” “Exact Sequence Variant,” and “sub-OTU”
are all synonyms for the same concept: a single amplicon se-
quence that was inferred to be present in a sample prior to
the introduction of amplification and sequencing errors.

For all aspects of microtypes that are defined as ontological
terms (e.g., name, synonyms, values, and units of measurement),
microtype designers should endeavor to use community stan-
dard ontologies wherever possible. This will enable Interoperability
with other advanced data science applications that use ontolo-
gies, since these ontologies can be developed by wide communi-
ties and used across diverse data systems.

System microtypes
To set up a new instance of CORAL, system administrators must
define a set of microtypes called “system microtypes,” which are
mandatory parts of data objects. These include the Data Type, Di-
mension Type, Values Type, and Unit Type microtypes. The allowed
values of each of these microtypes is a set of ontological terms.
These sets of terms are specified by instance administrators,
which allows them to specify broad categories of both static and
dynamic data types that may be built in each instance of CORAL.
This process is analogous to choosing a language for that specific
CORAL instance (see Discussion). When a dataset is uploaded, the
specific values of each of these microtypes must be chosen by
users from among the allowed terms, in order to formally doc-
ument the dataset.

Details of contextons
Values for contextons contain either a single scalar or an array of
the same type of scalars; valid scalar types may be defined in the
corresponding microtype. The dimensionality of the value or array
of values depends on what the contexton is providing context for.
See Fig. 6 for examples.

Units for contextons must be specified as an ontological term, to
eliminate ambiguity. By default, unit values may be chosen from
the terms in the community standard PATO Units ontology [20], al-
though CORAL also allows instance administrators to define cus-
tom units that are relevant to their domain of interest, as defined
by the Unit Type system microtype.

Compound contextons
In some cases, context is best described through a combination
of atomic microtypes. For example, to express the concept “con-
centration of nitrate,” multiple contextons are combined to build
a single compound contexton. The primary contexton includes the
microtype that indicates the main property being measured (con-
centration), while any number of additional contextons may be
used to modify the first (e.g., indicating that the molecule whose
concentration is being measured is nitrate or that a series rep-

resents technical replicates rather than biological replicates). An
example is shown in Supplementary Fig. S5.

Implementation
A complete prototype implementation of CORAL, including doc-
umentation and installation instructions, is available at https://
github.com/jmchandonia/CORAL. This prototype consists of 2
parts: a front end written in Angular and a back end written in
Python. Both parts must be installed on a single host, and the front
end may then be accessed from other hosts using a web browser.
The prototype code repository also includes sample configuration
files, microtypes, data, and installation instructions that enable
the installation of an example CORAL instance containing a sub-
set of published ENIGMA data.

In the prototype back end, CORAL’s NDArray dynamic types are
built on top of the widely used and well-supported open-source
xarray library [10]. Each NDArray corresponds to a single xarray
Dataset object, and reserved key-value pairs are used to store addi-
tional metadata (e.g., contextons) that are mandatory in CORAL’s
NDArray objects. The xarray library stores and loads each of these
Dataset objects from the local filesystem in NetCDF-4 format [12];
this format implements a subset of the HDF5 data model [11].

In order to implement the FAIR principles of Findability and Ac-
cessibility, CORAL stores all datasets in the document store of the
open-source, multimodel database ArangoDB. Ontological terms,
metadata about dynamic objects, processes, and each type of
static object are stored in an individual collection. As mentioned
above, the dynamic datasets themselves are stored on disk in
NetCDF-4 format, while the ArangoDB collection indexes meta-
data such as the ontological terms referenced in each dataset.
ArangoDB represents all of the provenance (i.e., process) links be-
tween all core data objects and dynamic datasets using a graph
database. As a multimodel database, ArangoDB allows queries of
the graph database and document store simultaneously, simplify-
ing implementation of the CORAL API. Every data object in CORAL
is assigned a permanent identifier, and old versions of data will be
marked as superseded by newer versions (with a new identifier)
rather than deleted. This process ensures that all versions of all
datasets in CORAL are retrievable by their ID at any time.

Dynamic type validation
As described above, each microtype includes custom validation
methods to ensure that it stores only valid data. To maximize In-
teroperability and Reusability of our dynamic data objects, CORAL
supports 2 additional types of data validation: upload templates
and use templates. These are described below.

Upload Templates simplify the process of importing data into
CORAL by specifying a default set of dimensions and other contex-
tual data for a dynamic data type. When uploading data, the user
can optionally add to or remove the default data from the tem-
plate. For example, a template for microbial growth data might
specify a default time series as 1 dimension and specify that the
values in the matrix are, by default, optical density values with
dimensionless units. The template also specifies how to handle
invalid data in each underlying microtype or even specify more
strict limits on validating these data. When new datasets are up-
loaded, they are validated against all the constraints imposed by
their underlying ontological terms. For example, if a field is de-
scribed by an ontological term that implies a numeric value, all
such values are checked to ensure they are numeric before the
data can be uploaded. Similarly, if a term indicates that a field
is a foreign key linking to a core type, the presence of all linked
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Figure 6: Examples of single-value (i.e., scalar), 1-dimensional, and N-dimensional contextons. Contextons are of the same dimensionality as the
mathematical data object that they provide context for. For example, the data values in an N-dimensional array are N-dimensional contextons, while
the values of variables on each dimension axis are 1-dimensional contextons with the same length as each dimension. Single-value contextons are
used to provide context for an entire dataset and as modifiers in building compound contextons.

datasets is verified before the new data are accepted. By default,
trying to import invalid data results in an error, preventing them
from being uploaded. However, the user can choose, via the tem-
plates, whether to treat invalid data as missing (i.e., null values) or
to adjust outliers to be within an acceptable range. In these cases,
the user is warned of the changes when uploading, but the dataset
is accepted.

Use Templates are applied when dynamic datasets stored in
CORAL are retrieved for use. When writing a function to manipu-
late dynamic typed objects, the algorithm developer can specify,
using a template, which dynamic objects the algorithm accepts.
For example, if an algorithm only works on time-series data, the
algorithm developer can specify that the algorithm only works
with datasets that have at least 1 dimension labeled with the Time
Series microtype. Use templates are therefore similar to interfaces
in object-oriented languages such as Java and C++.

Search
The provenance graph (Fig. 2C), which links each dataset in CORAL
with the process and input objects used to generate it, enhances
both Findability and Reusability of static and dynamic datasets.
Data are more Findable because they can be searched for using
graph queries that are supported by the underlying database, in
addition to any of the context data within the dynamic type it-
self (both the microtypes and the ontological terms used as values
can be searched). These queries can be quite powerful, for exam-
ple, identifying all data objects that ultimately resulted from work
performed by a particular person or group. The graph of samples
and core types also provides additional provenance, using formal

ontological terms, for each dynamic type, which is a key aspect of
enhancing Reusability.

Because ontologies and microtypes are both stored in tree-like
hierarchies, CORAL enables users to search by ancestral terms as
well (e.g., a search for “carbohydrate” will also find all data that
refer to “glucose”).

Visualization
CORAL includes “wizards” to build powerful interactive visualiza-
tions of dynamic datasets. For multidimensional data, the user
specifies which dimensions are to be graphed on which axes of the
plot. CORAL then generates the plot, labeled according to the ap-
propriate microtypes and ontological terms used in each dimen-
sion. Examples are shown in Supplementary Fig. S4.

Which plots are available depends on the number of dimen-
sions in each dataset and the scalar types associated with the mi-
crotypes that provide context in each dimension. This feature re-
quires the Use Templates functionality described above. For exam-
ple, to visualize data as a 2-dimensional line graph, the dataset
must have at least 1 dimension labeled with a microtype with nu-
meric values and also have an overall values type labeled with
a numeric microtype. The plotly library [21] is used to draw the
plots.

If the number of dimensions in a dataset exceeds the num-
ber that can be plotted in a given plot type (e.g., a 4-dimensional
dataset on a 2-dimensional line graph), the interface requires ad-
ditional dimensions to be constrained by the user. Each dimension
may be plotted as a series or averaged, or a single value from the
dimension may be chosen.
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Datasets that contain or are linked in the provenance graph to
2 specific microtypes, latitude and longitude, may also be plotted on
a Google Map. Map pins may be colored according to any variable
in the data brick.

Dynamic libraries
In addition to uploading data, CORAL users can perform analy-
ses of the dynamic data types stored within the system, then save
the resulting dynamic data objects. In this case, rather than ask-
ing the user to provide provenance for the objects, all provenance
is tracked automatically. We wrapped a number of popular Python
functions for manipulating data, such as slicing, merging, or other
mathematical manipulations such as dimensionality reduction.
When these functions are run on dynamic datasets, the object’s
“session provenance” stores all computational manipulations that
have been performed on the data since the time they were re-
trieved from storage, including records of all methods called and
the method parameters. Thus, if the user stores processed results
in the CORAL data store, this session provenance is also saved, so
that the same process can easily be replicated.

Our NDArray dynamic data type is particularly well suited for
modeling observational and physical data. We focus on this data
type because observational datasets are among the most hetero-
geneous and complex-structured data that have to be managed.
In addition, observational data must be searchable, sliceable, and
mergeable in such a way as to facilitate statistical and physical
modeling, which is often a goal of computational data analysis.

Dynamic joins (step-by-step merging)
To improve Interoperability of dynamic data objects, we provide
tools to easily merge data from other static and dynamic datasets
that are linked in the provenance graph.

For example, the dynamic dataset of geochemical data is linked
to the Sample core type and from there to the Location core type. A
user wishing to correlate geochemical data with the sampling lo-
cations and/or depths could ask CORAL to automatically retrieve
and merge all data from the Sample core type as additional vari-
ables in the dynamic geochemistry dataset. The user could then
merge latitude and longitude data into their dataset by using the
Sample identifiers to map each data point back to the Location core
type. The resulting larger dataset could be saved as a new dy-
namic dataset in the CORAL data store or analyzed further using
the wrapped Python libraries.

An example of Dynamic Joins is shown in Supplementary
Fig. S6.

Authentication and Permissions
CORAL uses the OAuth 2.0 protocol to manage user access. CORAL
instance administrators may add or remove access to individual
OAuth identities; however, any user with access to a CORAL in-
stance also has access to all the data stored in that instance.
Instance administrators may specify whether a user has access
to a bulk upload interface (which allows upload of preformatted
large datasets, eliminating the Excel steps in the upload wizard
described below), as well as a list of static data types they are au-
thorized to upload.

Python API
CORAL provides a unified Python API to support many queries and
manipulation of data objects. There are several types of CORAL
users, each with their own API needs. Data providers (e.g., bench
scientists or clerical workers) need a specialized interface to up-

load data, supported by API functionality to map strings to on-
tological terms, perform data validation, and add new objects to
the system. Managers need a specialized interface that gives an
overview of the system, with the ability to drill down into par-
ticular objects, and this is supported by a powerful search API.
Finally, data scientists will manipulate datasets in Jupyter note-
books and need APIs for data manipulation, wrappers for popular
Python tools, and powerful search tools.

Because the CORAL API is built using standard Python libraries
for numeric analysis, such as pandas, NumPy, and xarray [10], it
is simple for data scientists to use the API to export CORAL data
in a number of formats, including simple tab-delimited tables to
HDF5 [11] and NetCDF-4 [12].

Additional documentation of our Python API is provided in the
supplementary information.

REST API and Remote Data Access
The prototype implementation of the CORAL back end includes
a REST API that provides data to the front end. Authentication of
this API is done using OAuth, with information about the logged-
in user stored in JWT tokens. The same REST API also allows users
who are not logged in but possess a preshared cryptographic to-
ken to remotely run the search API and retrieve the resulting static
and dynamic datasets. This functionality provides both Findability
and Accessibility of all data in CORAL. This feature also allows de-
velopers to build specialized websites to display particular types
of data that are stored in CORAL, without requiring users to have
accounts on the CORAL server. CORAL uses public-key cryptogra-
phy to validate the tokens, which are generated in pairs, with 1
of the 2 tokens secured on the server and the other given to de-
velopers authorized to access the data. If the developer token is
compromised, access may be revoked by removing the server-side
token.

Documentation of our REST API, including our Remote Data
Access API, is provided in the supplementary information.

Upload wizard
The uploader was designed to allow non–computer science users
(e.g., bench biologists or other data providers) to upload data.
We guide them through providing all the necessary context and
provenance for each new dataset using a “wizard.” When up-
loading new data, complete provenance must be provided: all in-
put objects, processes, and other data are then connected in the
ArangoDB graph database to the newly uploaded object. The wiz-
ard is shown in more detail in the supplementary information.

The upload wizard starts by asking the user to document all the
data variables and dimensions in the data they are uploading. The
interface allows the user to select from drop-downs of allowed
data types, units, and so on. If similar datasets are uploaded mul-
tiple times, instance administrators can create an “upload tem-
plate” for the corresponding data type, which provides default an-
swers to these questions. Once the user specifies the structure of
the data, the wizard creates an Excel template for the user to paste
data into. Rows and columns in the template are labeled and col-
ored to reduce the possibility of error. After the user uploads the
filled-in template, CORAL interactively allows the user to check
the data, then validates the data to ensure that all constraints are
satisfied. For example, references to static objects must use the
correct names of objects already uploaded into the system.

A final step requires the user to specify the process and per-
sonnel that generated the data. This allows CORAL to connect the
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newly uploaded dataset to the appropriate inputs in the prove-
nance graph.

Management tools
CORAL provides several interfaces that display an overview of all
data in the system, allowing users to drill down to view partic-
ular data objects. A management dashboard supports queries of
particular interest to managers, such as who is producing which
datasets, which datasets are most widely used, and so on.

A key aspect of the management dashboard is an overview of
the provenance graph, showing all datasets in the system. This
is the default view that is displayed to all users upon logging in
to CORAL. Double-clicking on individual datasets displays them
in the search interface. Checkboxes on the left side of the graph
allow users to filter the display to show only a subset of the data
(e.g., data produced by a particular project, lab, or person).

Data scientist view
Data scientists access the CORAL API through Jupyter notebooks,
running in a shared directory of a server running JupyterHub. De-
fault permissions are set by the organization. The default CORAL
permission settings allow any user to read others’ notebooks,
but writing privileges must be explicitly granted (although a user
can fork a writable copy of another user’s notebooks). Because
all notebooks and data are readable by any user with access to
an instance of CORAL, every user may easily reproduce others’
analyses.

Availability of Source code and
Requirements
Project name: CORAL
Project homepage: https://github.com/jmchandonia/CORAL [22]
Operating system: The prototype back-end code has been tested
on Debian GNU/Linux, CentOS Linux, and macOS. The prototype
front end runs on any modern web browser.
Programming language: The majority of the prototype back-end
code is Python, with some Java dependencies. The prototype front
end is written in Angular (TypeScript).
License: GNU Affero General Public License (AGPL-3.0 license) or
(at the recipient’s option) a separate commercial use license.
RRID: SCR_0022711

Data Availability
Snapshots of our code and other data further supporting this work
are openly available in the GigaScience repository, GigaDB [23].

Additional Files
Supplementary Information: Additional details concerning the
CORAL user interface, features, and API documentation are avail-
able in the supplementary file “giac089_Supplemental_File”, on-
line at https://academic.oup.com/gigascience/article/doi/10.1093
/gigascience/giac089/6762021#supplementary-data.
Supplementary Fig. S1. The provenance graph displays linked
data as a directed graph of boxes. Blue ovals indicate static data
types, while orange squares represent dynamic data types. Static
data types with no external data inputs are shown near the top of
the graph and highlighted in green as a starting point for browsing
the data. Double-clicking on individual objects brings the appro-
priate datasets up in the search interface. Checkboxes on the left
side (ENIGMA Campaigns and ENIGMA Labs/People) allow smaller

subsets of the data to be shown. If any boxes are checked, only the
data produced by a particular lab, project, or person, as well as in-
puts and outputs, are shown.
Supplementary Fig. S2. (A) Data generators can upload dynamic
datasets using predefined templates or build a new data structure
on the fly. A list of broad data categories (e.g., “microbial growth”)
is defined by the CORAL instance administrators, as are all the
possible microtypes and ontological terms that can be used by
bench scientists to describe their data. (B) Once a data category
is chosen, data generators then define the variable(s) stored in
their data object. These definitions indicate exactly what quantity
was being measured and the units of measurement. The drop-
down for units only displays appropriate units as defined in the
microtype. All fields use autocompletion, with a drop-down that
displays appropriate microtypes or units that are filtered using
the characters typed by the data generator. (C) Generators next
define the overall structure of the data: how many dimensions
are in the data, and what varies along each dimension? Genera-
tors input these terms using auto-completing text boxes, and valid
units for each variable must be selected from a menu. Valid di-
mension types and valid units for each microtype are defined by
the CORAL instance administrators. (D) CORAL then generates a
template spreadsheet into which data generators will paste their
data. The template is of the appropriate dimensionality for the
data type that was defined in the previous steps. All of the vari-
able names and units are indicated in the template, so the user is
clear on where to paste everything. (E) The data generator pastes
their data (including the values of variables along each dimen-
sion) into the template, then uploads the file. (F) CORAL then gives
the generator a preview of the data, so they can check whether ev-
erything was parsed correctly from the template. Generators may
also add additional contextons that describe the context of the
entire dataset. (G) Datasets are validated (via validators defined in
the microtypes) and linked (via microtypes that refer to other data
in the system) before they can be accepted. (H) As a last step, the
data generator provides information about the process by which
they created the data, which is used to build links in the prove-
nance graph.
Supplementary Fig. S3. An overview of a 4-dimensional dynamic
dataset containing metals measurements on 209 environmental
samples.
Supplementary Fig. S4. (A) A wizard guides the user through plot-
ting a 4-dimensional chemical measurements dataset as a verti-
cal bar chart. (B) An interactive bar chart is shown in response to
the user-specified options shown in Supplementary Fig. S4A. This
logarithmic plot shows the concentration of nitrate in a number
of environmental samples. The “Share Plot” button allows users
to copy the URL, which they can share with other CORAL users to
display the same plot again. (C) An example of the interface for
plotting dynamic datasets on a map. (D) An example of the map
resulting from Supplementary Fig. S4C, in which the concentra-
tion of nitrate from several samples is plotted on a map, according
to the sampling location.
Supplementary Fig. S5. This figure shows the top level of the mi-
crotype tree browser, with the “ENIGMA” category opened to show
several subhierarchies under it and the “Measurement” hierarchy
opened to show some of the microtypes that represent measure-
ments. The “Filter by keyword” box at the top also allows users to
search all microtypes and their definitions; as the user types, the
tree is immediately filtered to show only relevant microtypes and
their parents.
Supplementary Fig. S6. Example of compound contexton. The
concentration microtype indicates the primary property being
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measured. Additional modifying contextons indicate that the
molecule for which the concentration is being measured is nitrate,
that the measurement is being performed at 25 degrees Celsius,
and that the values in the contexton are logarithmically scaled
(log base 2).
Supplementary Fig. S7. Example of Dynamic Joins: the user starts
with a Source dynamic dataset, which contains data that are
linked to the core static type “Well” through the “Well ID” mi-
crotype, which serves as a primary key for Well objects. By us-
ing Dynamic Joins, the user can bring in fields from the linked
(“Source”) Well objects, which become dimension variables in a
new dynamic dataset, labeled Target. The Target dynamic object
contains fields from both Source objects.
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