

CORAL: A framework for rigorous self-validated data

modeling and integrative, reproducible data analysis

Supplementary Information

CORAL UI Features

Provenance Graph

After logging in, all users are shown the provenance graph, which displays an overview of all

datasets in the system. Checkboxes on the left side of the graph allow users to filter the display

to show only a subset of the data; e.g., data produced by a particular project, lab, or person.

Figure S-1 shows the complete provenance graph for a subset of ENIGMA data from a

published study [1]; these datasets are included in the repository on GitHub.

Figure S-1: The provenance graph displays linked data as a directed graph of boxes. Blue

ovals indicate static data types, while orange squares represent dynamic data types. Static

data types with no external data inputs are shown near the top of the graph and highlighted in

green as a starting point for browsing the data. Double-clicking on individual objects brings the

appropriate datasets up in the search interface. Checkboxes on the left side (ENIGMA

Campaigns and ENIGMA Labs/People) allow smaller subsets of the data to be shown. If any

boxes are checked, only the data produced by a particular lab, project, or person, as well as

inputs and outputs, are shown.

Uploader

The CORAL Upload Wizard helps scientists describe their data, and validates all datasets

before adding to the system. Steps in this process are shown in Figure S-2, below.

Figure S-2A: Data generators can upload dynamic datasets using pre-defined templates, or

build a new data structure on the fly. A list of broad data categories (e.g., “microbial growth”) is

defined by the CORAL instance administrators, as are all the possible microtypes and

ontological terms that can be used by bench scientists to describe their data.

Figure S-2B: Once a data category is chosen, data generators then define the variable(s)

stored in their data object. These definitions indicate exactly what quantity was being

measured, and the units of measurement. The dropdown for units only displays appropriate

units as defined in the microtype. All fields use autocompletion, with a dropdown that displays

appropriate microtypes or units that are filtered using the characters typed by the data

generator.

Figure S-2C: Generators next define the overall structure of the data: how many dimensions

are in the data, and what varies along each dimension? Generators input these terms using

auto-completing text boxes, and valid units for each variable must be selected from a menu.

Valid dimension types, and valid units for each microtype, are defined by the CORAL instance

administrators.

Figure S-2D: CORAL then generates a template spreadsheet into which data generators will

paste their data. The template is of the appropriate dimensionality for the data type that was

defined in the previous steps. All of the variable names and units are indicated in the template,

so the user is clear on where to paste everything.

Figure S-2E: The data generator pastes their data (including the values of variables along each

dimension) into the template, then uploads the file.

Figure S-2F: CORAL then gives the generator a preview of the data, so they can check

whether everything was parsed correctly from the template. Generators may also add additional

contextons that describe the context of the entire dataset.

Figure S-2G: Datasets are validated (via validators defined in the microtypes) and linked (via

microtypes that refer to other data in the system) before they can be accepted.

Figure S-2H: As a last step, the data generator provides information about the process by

which they created the data, which is used to build links in the provenance graph.

Dynamic Dataset Viewer

After uploading a new dynamic dataset, or finding a dataset through the search interface, users

can display an overview of the dataset in the UI. This overview includes all data variables and

dimensions, as well as their relevant units, and the process that was used to generate the data.

This process information includes the personnel generating the data, their lab, dates, and input

objects.

Figure S-3: An overview of a 4-Dimensional dynamic dataset containing metals measurements

on 209 environmental samples.

Dynamic Dataset Plotting

CORAL includes a wizard to help users plot dynamic datasets. Which plots are available

depends on the number of dimensions in each dataset, and the scalar types associated with the

microtypes that provide context in each dimension.

If the number of dimensions in a dataset exceeds the number that can be plotted in a given plot

type (e.g., a 4-D dataset on a 2-D line graph), the interface requires additional dimensions to be

constrained by the user. Each dimension may be plotted as a series, averaged, or a single

value from the dimension may be chosen. An example is shown in Figure S-4A.

Figure S-4A: A wizard guides the user through plotting a 4-Dimensional chemical

measurements dataset as a vertical bar chart.

The resulting plot is shown in Figure S-4B.

Figure S-4B: An interactive bar chart is shown in response to the user-specified options shown

in Figure S-4A. This logarithmic plot shows the concentration of nitrate in a number of

environmental samples. The “Share Plot” button allows users to copy the URL, which they can

share with other CORAL users to display the same plot again.

Datasets that contain two specific microtypes, latitude and longitude, may be plotted on a

Google Map. Map pins may be colored according to any variable in the data brick. Data that

are linked in the provenance graph to a latitude and longitude may also be projected onto a

map. Internally, this process uses dynamic joins (described below) to pull in additional variables

from linked datasets; the resulting temporary data brick is then plotted. An example is shown in

Figures S-4C and S-4D, below.

Figure S-4C: An example of the interface for plotting dynamic datasets on a map.

Figure S-4D: An example of the map resulting from Figure S-4C, in which the concentration of

nitrate from several samples is plotted on a map, according to the sampling location.

Microtype Tree Browser

To assist data generators and other users with determining which microtypes are appropriate to

describe their data, CORAL includes a microtype browser. All microtypes in the CORAL

instance are displayed in a hierarchy, which may be expanded by clicking the arrows next to

each group. Icons indicate which microtypes can be used to create various types of contextons,

e.g., as data variables, dimensions, dimension variables, or properties of an entire dataset.

Ontological terms that are not themselves microtypes, but which are used as parents to

categorize groups of microtypes, are displayed in light grey. Definitions of microtypes, and their

scalar types, are also displayed to the user.

Figure S-5: This figure shows the top level of the microtype tree browser, with the “ENIGMA”

category opened to show several sub-hierarchies under it, and the “Measurement” hierarchy

opened to show some of the microtypes that represent measurements. The “Filter by keyword”

box at the top also allows users to search all microtypes and their definitions; as the user types,

the tree is immediately filtered to show only relevant microtypes and their parents.

Compound Contextons

In many instances, context is best described through a combination of atomic microtypes. For

example, to express the concept "concentration of nitrate," multiple contextons are combined to

build a single compound contexton. The primary contexton includes the microtype that

indicates the main property being measured (concentration), while any number of additional

contextons may be used to modify the first (e.g., indicating that the molecule whose

concentration is being measured is nitrate, or that the measurement is taken at 25 degrees

Celsius). This example is shown below, in Figure S-6:

Figure S-6: Example of compound contexton. The Concentration microtype indicates the

primary property being measured. Additional modifying contextons indicate that the molecule

for which the concentration is being measured is Nitrate, that the measurement is being

performed at 25 degrees Celsius, and that the values in the contexton are logarithmically scaled

(log base 2).

Dynamic Joins

For example, the dynamic dataset of geochemical data is linked to the Sample core type, and

from there to the Location core type. A user wishing to correlate geochemical data with the

sampling locations and/or depths could ask CORAL to automatically retrieve and merge all data

from the Sample core type as additional variables in the dynamic geochemistry dataset. The

user could then merge latitude and longitude data into their dataset by using the Sample

identifiers to map each data point back to the Well core type. The resulting larger dataset could

be saved as a new dynamic dataset in the CORAL data store, or analyzed further using the

wrapped Python libraries.

An example of Dynamic Joins is shown in Figure S-7, below.

Figure S-7: Example of Dynamic Joins: the user starts with a Source dynamic dataset, which
contains data that is linked to the core static type “Well” through the “Well ID” microtype, which
serves as a primary key for Well objects. By using Dynamic Joins, the user can bring in fields
from the linked (“Source”) Well objects, which become dimension variables in a new dynamic
dataset, labeled Target. The Target dynamic object contains fields from both Source objects.

Python API Documentation

The most important aspects of Python API available in the CORAL prototype implementation

are described below, and additional documentation is provided in the back end code:

ReportBuilder Service: Creates reports that provide a high level overview of the contents of a

particular instance of CORAL.

UserProfile Service: Maintains lists of the microtypes and ontology terms most commonly used

by each CORAL user in an instance, in order to increase the convenience of access to these in

Jupyter notebooks and front end menus.

DataProvider Service:

 find(): implements searches for both static and dynamic data types, allowing

simultaneous queries of both the metadata in particular objects as well as their provenance

relationships in the ArangoDB graph database.

 create_brick(): creates a dynamic data object

 load_brick(): returns a dynamic data object stored in CORAL

 type_names(): queries the Ontology Service to find all valid Data Categories allowed in

this CORAL instance for dynamic data objects.

Arango Service: Provides wrappers for commonly used ArangoDB queries.

Ontology Service: Maintains a database of microtypes and ontological terms, which is backed

by a collection in the ArangoDB database. The ontology service also provides convenient

methods for searching this collection.

Workspace Service: Includes methods for storing and retrieving static and dynamic objects, as

well as processes, using the underlying ArangoDB data store.

Typedef Service: Includes methods for validating the definitions of static core data types,

including foreign keys, and validating that new static core data meet the defined standards (e.g.,

correct scalar types, boundary checking).

Validation Service: Includes methods for validating microtypes, such as checking that the scalar

types represented in a contexton are correct, that the units are compatible with the allowed

units, etc.

Tools: Provides wrappers for popular Python tools, enabling them to operate on NDArray

objects without losing the contextons attached to the underlying numeric data. For example, we

have wrapped the sklearn.decomposition.PCA class from the widely used machine learning

library scikit-learn [2], which performs principal component analysis (PCA) on NDArray objects

to project them to a lower-dimension space. PCA fitting of a NDArray with a large first

dimension results in a new NDArray with the first dimension replaced by a new “PCA

Components” dimension of shorter length (based on the number of components requested by

the user). All context describing the remaining dimensions is preserved in the PCA output.

Web Services: Serves the REST API (detailed below).

REST API Documentation

Details of the available REST API calls in the prototype CORAL implementation are given

below. Full implementation details are provided in the source code on GitHub, in the file

back_end/python/coral/web_services.py. API calls are grouped in the following categories:

Remote Data Access

The following API calls are accessible to both logged in users and users who are not logged in,

but who possess a valid remote data access token (see main manuscript for details):

/coral/search – Search for data, returning lists of object identifiers for both static and dynamic

objects. Queries can be constructed to search within data objects (i.e., the contextons),

and/or to search according to the provenance of objects (e.g., objects that link up or down to

other objects in the ArangoDB provenance graph).

/coral/brick/<brick_id> - Return a dynamic object (brick) in CSV or JSON format.

/coral/filter_brick/<brick_id> - Returns a subset of data stored in a single dynamic object (brick).

Filtering supports simple operations such as slicing on any dimensions of the NDArray

object, or averaging all values in a dimension in order to flatten the brick in that dimension.

This API primarily supports plotting of dynamic datasets, as described above.

/coral/data_types – Returns a list of all static and dynamic data types in a CORAL instance.

/coral/data_models – Returns the fields (1D contextons) that define all static core types,

including scalar types and units if applicable.

/coral/core_type_names – Returns a list of all static data types in a CORAL instance.

/coral/core_type_props/<obj_name> - Returns the fields (1D contextons) that define a particular

static core type, including the units of each contexton if applicable.

/coral/core_type_metadata/<obj_id> - Return a particular static core object in TSV or JSON

format.

/coral/process/<process_id> - Returns details of processes (edges in the provenance graph).

/coral/types_graph – Returns the complete provenance graph (described above) or a subset of

the graph filtered according to campaigns or personnel.

Ontology and Microtype Search

These API calls search microtypes and ontology dictionaries defined in an instance of CORAL.

They are primarily used for autocompletion, to map words or partial words input by the users to

all matching ontological terms or microtypes. There are separate API calls for each type of

System Microtype (see main manuscript for definition).

/coral/search_property_value_oterms – Searches all ontological terms and microtypes in an

instance of CORAL, according to definitions, aliases, and/or parent terms.

/coral/get_property_units_oterms – Returns all valid units for a particular microtype.

/coral/search_data_variable_microtypes/<value> - Searches Data Type microtypes.

/coral/search_dimension_microtypes/<value> - Searches Dimension Type microtypes.

/coral/search_dimension_variable_microtypes/<value> - Searches Values Type microtypes.

/coral/search_property_microtypes/<value> - Searches all microtypes.

/coral/get_process_oterms – Returns all valid Process types defined in a CORAL instance.

ENIGMA-specific API

The prototype implementation of CORAL is customized to the ENIGMA workflow, and thus

some aspects of project management, such as the organization of experiments into projects

called “campaigns” and the association of each dataset with personnel who created it are

encoded in our instance-specific definition of the Process type. These API calls return valid

personnel and campaigns, based on instance-specific ontologies:

/coral/get_personnel_oterms – Returns all valid personnel defined in a CORAL instance.

/coral/get_campaign_oterms – Returns all valid campaigns defined in a CORAL instance.

/coral/filters – Returns all valid options for filtering the provenance graph in the UI (e.g., lists of

personnel and campaigns to include in the graph).

Upload-specific API

Uploading Dynamic Types

/coral/brick_type_templates – Returns a list of all templates available in an instance of CORAL

for uploading dynamic data types.

/coral/generate_brick_template – Generates an Excel format template for users to paste their

data into. The template matches the structure of the dimensions and data variables

provided by the user.

/coral/upload – After the user has pasted data for a new dynamic dataset into a template

spreadsheet, this method uploads it into the system for validation.

/coral/upload_csv – Same as above, but for (expert mode) uploading of CSV-formatted datasets

(This is useful for uploading large or automatically generated datasets, as an alternative to

pasting data into a spreadsheet template).

/coral/validate_upload – The first step in validating a dynamic dataset that is in the process of

being uploaded.

/coral/validate_upload_csv/<data_id> - Same as above, but for (expert mode) validating

uploaded CSV-formatted dynamic datasets.

/coral/refs_to_core_objects/ - Scans a dynamic dataset and identifies all contextons that refer to

static core objects, then validates that the references are all valid identifiers (i.e., refer to

existing core objects in that CORAL instance). This is used during validation of bricks being

uploaded.

/coral/dim_var_validation_errors/<data_id>/<dim_index>/<dim_var_index> - Returns a list of

errors encountered during validation of a user-uploaded dynamic dataset (for dimension

variables).

/coral/data_var_validation_errors/<data_id>/<data_var_index> - Returns a list of errors

encountered during validation of a user-uploaded dynamic dataset (for data variables).

/coral/search_property_value_objrefs – Search for static core objects by name and by the

microtype that corresponds to the static core type to be searched. This is used for

autocompletion of core object names in the uploader UI (described above).

/coral/filter_tmp_brick/<brick_tmp_id> - Analogous to the /coral/filter_brick/<brick_id> call,

above, this method allows plotting of bricks that are not completely loaded into the system,

but are still being uploaded. This is useful for manual sanity checking of data that is in the

process of being uploaded.

/coral/create_brick – The final step in uploading a new dynamic dataset into the system, after

the data have been validated.

Uploading Static Core Types

/coral/upload_core_types – The first step in uploading new static core data objects into CORAL.

Adding new static data types must be done by the instance administrators, but once a type

is defined, this allows users with upload permissions to upload new data of a defined core

type.

/coral/validate_core_tsv_headers – Validates that the headers in user-uploaded static core data

are as expected, based on the typedef configured by instance administrators.

/coral/get_core_type_results/<batch_id> - The final step in uploading new static core data. This

method returns a list of warnings and errors encountered during the upload.

/coral/update_core_duplicates – This method allows users to make corrections to erroneous

data in core data types. When uploading, if CORAL encounters a duplicate key (i.e., name

for a static data object), this method allows the user, though the UI, to assert that they are

correcting a dataset that is already in the system.

/coral/get_provenance/<type_name> - Checks whether a static core type requires incoming

process links when new data are added to an instance of CORAL. Static core types that are

defined as “top level” in the process hierarchy do not need incoming process links, but all

other core types do.

Reporting

/coral/reports – Lists all pre-configured reports that are available on the data objects that have

been uploaded into an instance of CORAL.

/coral/reports/<id> - Returns one of several pre-configured reports on the data objects that have

been uploaded into an instance of CORAL, in table format.

/coral/report_plot_data/<report_id> - Returns one of several pre-configured reports on the data

objects that have been uploaded into an instance of CORAL, in a format suitable for plotting.

Authentication

/coral/user_login – API call to begin the user login process, via OAuth2

/coral/google_auth_code_store – Helper function to process OAuth2 logins via the Google API.

/coral/request_registration – Allows users to request a new account, which must be approved by

the CORAL instance administrators.

Plotting

/coral/plot_types – Returns a list of supported plot types, allowing the user to choose one in the

UI.

/coral/plot_data – Converts the data values in a dynamic dataset into x, y, and z coordinates for

plotting using the plotly library [3].

/coral/plotly_data - Formats a dynamic dataset (i.e., “brick”) for plotting using the plotly library

[3].

/coral/plotly_core_data – Formats a set of static core data for plotting using the plotly library [3].

/coral/brick_plot_metadata/<brick_id>/<limit> - Returns information about the dimensions,

dimension variables, and size of a dynamic dataset (i.e., “brick”), but not the data values

themselves. This API call is the first step required to plot a brick through the plotting

interface (described above), and returns additional information beyond the

/coral/brick_metadata API call.

/coral/brick_map/<brick_id> - Maps data stored in a dynamic data object to labels, colors, and

other plot options selected by the user through the plot interface.

/coral/brick_merged_coords/<brick_id>/<limit> - Automatically merges any applicable data

variable that is linked to “latitude” and “longitude” contexton information with those values,

so that dynamic datasets derived from a static core object that stores location properties

may be plotted on a map.

Other API Calls

/coral/brick_metadata/<brick_id> - Returns information about the dimensions, dimension

variables, and size of a dynamic dataset (i.e., “brick”), but not the data values themselves.

/coral/brick_dimension/<brick_id>/<dim_index> - Returns information about a specific dimension

of a dynamic dataset.

/coral/brick_dim_var_values/<brick_id>/<dim_idx>/<dv_idx>/<keyword> - Enumerates the data

values of a dimension variable.

/coral/search_operations – Returns all the supported operators for building search queries, for

display in the UI.

/coral/types_stat – Returns a summary of the number and types of all data stored in a particular

instance of CORAL.

/coral/set_node_position_cache – Caches the positions of all nodes in the provenance graph, so

that the node positions do not need to be recalculated if the same filter settings are re-used.

/coral/delete_node_position_cache – Deletes the cache of positions of all nodes in the

provenance graph, requiring them to be recalculated and automatically repositioned.

/coral/dn_process_docs/<obj_id> - Returns all processes in the provenance graph that use a

particular static or dynamic data object as an input.

/coral/up_process_docs/<obj_id> - Returns all processes in the provenance graph that use a

particular static or dynamic data object as an output.

/coral/microtypes – Returns a data on all microtypes in an instance of CORAL. This is used by

the microtype tree browser, described above.

/coral/image – Returns a full-size image or thumbnail, for static core types that are images.

Product Comparison

Many contemporary data science tools include some, but not all of the features of CORAL.

Low-level data models (e.g., pandas dataframes, the R language) allow N-dimensional data to

be modeled, but don't support the rigorous formal documentation of metadata that CORAL

achieves using microtypes. SQL-based data platforms can be made as rigorous as CORAL at

documenting this metadata, but those have far higher maintenance costs. Data formats like

ISA-Tab allow metadata to be rigorously documented for individual files, but these don't allow

sophisticated modeling and annotation of N-dimensional datasets, with formally annotated

context in each dimension.

Some more complex tools and databases include some concepts similar to those in CORAL.

For example, many biological databases (e.g., Planet Microbe), document metadata using

ontological terms or controlled vocabularies, but these databases are specialized for a particular

data type (usually sequence data, such as amplicon reads or metagenomic sequences), and do

not support nearly the range of data types that can be modeled using CORAL.

Like CORAL, Palantir's open XML data formats clearly annotate the provenance of all data.

However, Palantir's datasets are stored as documents (e.g., text documents or spreadsheets)

annotated with simple metadata, unlike CORAL's more complex mathematical data types, which

facilitate computational analyses of the data.

 Low Setup
and
Maintenance
Costs

Mandates
Context

Easy to
Evolve new
Data Types

Powerful
Analysis
Tools

Complex
Data
Structures on
which
Computations
can be Made

CORAL Y Y Y Y Y

Python/panda
s

Y N N Y Y

R Y N N Y Y

SQL N Y N N N

MongoDB Y N Y N N

Apache
Arrow

N Y N N N

Apache
Parquet

N Y N N N

Planet
Microbe

N Y N N N

Palantir N Y Y Y N

Applications

The most time-consuming and challenging part of deploying CORAL in a new organization is

customizing an appropriate set of core types and ontologies that are necessary and sufficient to

document a particular business domain. However, once that is done, deploying new data types

or modifying existing types is quite easy: only minor additions to ontologies and core types are

required.

ENIGMA

Our first application for CORAL is the ENIGMA project, a large consortium of researchers that

study how communities of microbes interact with their environment (https://enigma.lbl.gov/). We

list the main ontologies, as well as core types, used for this project. Detailed instructions for

installing CORAL with a subset of ENIGMA data from a published study [1] are included in the

repository on GitHub.

Ontologies

● ChEBI - a public database of molecules and small chemical compounds [4]

● Context/Measurement Ontology - a custom ontology we built for describing the

mathematical, physical, chemical, or biochemical context of measurements that are

typically taken by environmental microbiologists, as well as a list of terms for such

measurements, statistics performed on those measurements, and a list of specialized

units relevant to these measurements

● Continents - a custom ontology listing seven continents

● Countries - a custom ontology listing current and historical countries, adapted from

http://www.insdc.org/country.html

● Data Type Ontology - a custom hierarchic ontology of data types collected or used by

ENIGMA scientists, including all valid types for dynamic types

● Dimension Type Ontology - a custom hierarchic ontology of valid dimension types from

NDArrays used to store ENIGMA scientists' data

● ENIGMA-specific Ontology - custom terms that capture some of the ENIGMA

management hierarchy, such as PI, scientist, and campaign names

● Environment Ontology - a public ontology used to describe biomes in which samples

were collected

● MIxS Ontology - a custom ontology containing environmental terms from MIxS

(https://press3.mcs.anl.gov/gensc/mixs/)

● Process Ontology - a custom ontology containing all the valid processes used within

ENIGMA. The processes connect the core types (listed below) to each other, and to

dynamic types.

● Units Ontology - public ontology for describing units of measurement [5]

Core Types

● Well/Sampling Location - a 2D location that stores the latitude, longitude, and other

invariant metadata that describe a geographic location where samples are collected

● Sample - a water or soil sample taken from a Well/Sampling Location, which stores the

time, depth or elevation, and other additional details that are specific to a given sample

● Taxon - a reference to the NCBI taxonomy

● OTU - an OTU called from 16S reads

● Condition - an environmental or laboratory condition under which experiments are

conducted

● Strain - a named or characterized strain of a microbe

● Community - a group of one or more microbes, grown together

● Reads - DNA or RNA sequences collected by sequencing a sample or community

● Assembly - a set of assembled reads

● Genome - an annotated assembly (i.e., with genes called)

● Gene - a single gene in a genome

● TnSeq Library - a knockout library created for a given strain

Finance

For a company that is tracking financial data on their customers, we would need to design

ontologies and core types similar to the following:

Ontologies

● Assets - a custom ontology listing various types of assets, in a hierarchy according to

asset class

● Credit Ontology - a custom ontology containing terms relevant to credit reports

● Currencies - a custom ontology with terms for world currencies

Core Types

● Person - records relating to an individual

● Account - records of a person's accounts, e.g., liabilities or debts. Financial records for

each account would presumably be linked to this as dynamic types.

Medical

A medical firm may wish to track records related to a person's health, as well as financial

records such as billing. Some potential ontologies and core types are:

Ontologies

● Medical - an ontology containing terms related to medical records, tests, anatomy, etc.

● Financial - an ontology containing terms relevant to billing, insurance, etc.

Core Types

● Patient - records related to people who are patients

● Staff - records related to doctors and other medical personnel

● Contact - other people who are not medical staff or patients

● Test - records of medical tests; the results themselves would presumably be stored as

dynamic types.

Supplementary References Cited

1. Smith MB, Rocha AM, Smillie CS, Olesen SW, Paradis C, Wu L, et al.. Natural Bacterial
Communities Serve as Quantitative Geochemical Biosensors. mBio. American Society for
Microbiology; 2015; doi: 10.1128/mBio.00326-15.

2. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.. Scikit-learn:
Machine Learning in Python. J Mach Learn Res. 12:2825–302011;

3. Plotly Technologies Inc.. Collaborative data science. Montréal, QC;

4. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al.. ChEBI in 2016:
Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016; doi:
10.1093/nar/gkv1031.

5. Gkoutos GV, Schofield PN, Hoehndorf R. The Units Ontology: a tool for integrating units of
measurement in science. Database. 2012; doi: 10.1093/database/bas033.

