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Numerous affinity purification-mass spectrometry (AP-
MS) and yeast two-hybrid screens have each defined
thousands of pairwise protein-protein interactions (PPIs),
most of which are between functionally unrelated pro-
teins. The accuracy of these networks, however, is under
debate. Here, we present an AP-MS survey of the bacte-
rium Desulfovibrio vulgaris together with a critical reanal-
ysis of nine published bacterial yeast two-hybrid and
AP-MS screens. We have identified 459 high confidence
PPIs from D. vulgaris and 391 from Escherichia coli. Com-
pared with the nine published interactomes, our two net-
works are smaller, are much less highly connected, and
have significantly lower false discovery rates. In addition,
our interactomes are much more enriched in protein pairs

that are encoded in the same operon, have similar func-
tions, and are reproducibly detected in other physical
interaction assays than the pairs reported in prior stud-
ies. Our work establishes more stringent benchmarks
for the properties of protein interactomes and suggests
that bona fide PPIs much more frequently involve pro-
tein partners that are annotated with similar functions or
that can be validated in independent assays than earlier
studies suggested. Molecular & Cellular Proteomics
15: 10.1074/mcp.M115.054692, 1539–1555, 2016.

Proteins often function by interacting with partner proteins
to form complexes, which range from heterodimers to large
macromolecular assemblies (1, 2). If we can accurately learn
the heteromeric interactions that each protein makes, it will
greatly aid the modeling of all aspects of cellular biochemistry
and physiology.

Over the last 15 years, protein-protein “interactomes” have
been characterized on a genome-wide scale in bacteria and
eukaryotes by yeast 2-hybrid (Y2H)1 and affinity purification-
mass spectrometry (AP-MS) screens (1, 3–18). Y2H screens
detect binary physical interactions between pairs of proteins
expressed in a non-native host, whereas AP-MS detects pro-
teins that co-purify with a tagged protein expressed in the
native organism. The Y2H method can detect transient, lower
affinity interactions of as little as micromolar affinity (19),
whereas AP-MS is better suited to identify stable protein
complexes (5). The resulting networks generally comprise
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thousands of pairwise interactions between proteins in which
hub proteins are highly connected to functionally diverse ar-
rays of other proteins (1, 20), with the total interactome being
estimated to contain �10,000 protein pairs in Escherichia coli
(4) to �130,000 in humans (21).

As part of a large interdisciplinary project (enigma.lbl.gov),
we are conducting detailed system-wide analyses of the
model sulfate-reducing bacterium Desulfovibrio vulgaris, a
Deltaproteobacteria and obligate anaerobe (22). D. vulgaris
has been extensively characterized by functional genomic
studies of its response to environmentally relevant conditions
(23, 24), but relatively few protein complexes have been an-
alyzed to date (25–27). Therefore, we have performed a global
AP-MS screen to characterize its interactome and have also
critically reexamined nine published AP-MS and Y2H screens.
We have developed a rigorous data analysis strategy that has
identified 459 high confidence protein-protein interactions
(PPIs) for D. vulgaris and 391 PPIs from an existing AP-MS
dataset for E. coli, many of which are supported by low
throughput data from the literature. Importantly, compared
with the protein-protein networks proposed previously, our
two interactomes are smaller, less interconnected. and more
strongly enriched in protein partners that share similar func-
tion or whose interactions have been validated in independent
high throughput assays. We also show that the �3% of PPIs
from the earlier Y2H and AP-MS screens that were recipro-
cally confirmed as both bait-prey and prey-bait pairs, and
thus are more confidently detected, share very similar char-
acteristics with our two high confidence interactomes. The
remaining �97% of protein pairs from the earlier screens, in
contrast, do not. Our work provides more stringent criteria for
assessing the quality of protein interactomes and suggests
that the number of bona fide interactions from the earlier
screens that are supportable by independent evidence is
limited to hundreds and not the thousands claimed.

EXPERIMENTAL PROCEDURES

Recombinant Strain Construction and Affinity Purification

D. vulgaris Hildenborough wild-type ATCC29579 was ge-
netically engineered to encode locus-specific affinity purifica-
tion (AP)-tagged fusion proteins using electroporation of non-
replicating “suicide constructs” (28). Of the 3525 predicted D.
vulgaris protein-coding genes, we attempted to create tagged
strains for a priority list of 2086 genes. These genes were
selected based on several criteria, including detection of the
proteins they encode in fractionated cell-free extracts by MS,2

expected complexes based on E. coli interologs, and func-
tional interest, such as energy generation. We constructed
plasmids for generating chromosomal AP-tagged alleles for
1963 of the priority genes, 1681 of which were successfully
integrated into the D. vulgaris chromosome. From this set,

1498 strains expressing an AP-tagged fusion protein were
verified by Western blot, of which 1415 were constructed
using Sequence and Ligation Independent Cloning, 77 using
Gatewayn and 6 using recombineering procedures, supple-
mental Dataset S1. The primary AP tag utilized was Strep-
TEV-FLAG (1231 strains); however, Strep-TEV-FLAG-His6

(237 strains) and Sequential Peptide Affinity tag (30 strains)
(29) were also used. A non-redundant total of 1401 unique
genes are represented as AP-tagged alleles in the 1498
strains constructed. All affinity purifications were performed
as described previously (28). In all cases, Strep-TEV-FLAG-
His6 strains were treated exactly as Strep-TEV-FLAG strains
for the purposes of affinity purification of protein complexes.

Sample Preparation for Mass Spectrometry and LC MS Data
Acquisition

The majority of AP samples were analyzed by parallel gel-
free and gel-based workflows. In a gel-free approach, AP-
isolated proteins were digested with trypsin utilizing a 96-well
PVDF membrane-based protocol and analyzed by LC MS/MS
using either LTQ XL linear ion trap mass spectrometer
(Thermo Scientific, Fremont, CA) or LTQ Velos Orbitrap mass
spectrometer (Thermo Scientific), essentially as described by
Chhabra et al. and Roan et al., respectively (28, 30). Five
sample sets, however, used a QSTAR XL mass spectrometer
(AB Sciex, Framingham, MA) as described by Chiu et al. (31).
In all cases, an additional wash-run (5-�l injection of 50%
isopropyl alcohol to clean the trap cartridge; 30-min gradient
over analytical column, including two 5-min ramps from 3%
acetonitrile to 97% acetonitrile) and a protein standards run
consisting of bovine 6-protein mix (Michrom Bioresources,
Auburn, CA) (10-fmol injection; 15-min gradient 3% acetoni-
trile to 40% acetonitrile) were incorporated between AP sam-
ples to minimize carry-over of D. vulgaris proteins. The final
6-protein mix standard-run was used to assess carry-over
between samples (i.e. represents the “background-run” de-
scribed below). In the gel-based workflow, proteins were frac-
tionated by SDS-PAGE (12%) and bands visualized by silver
staining (13). Selected bands were excised from the gel; pro-
teins were in-gel digested with trypsin using a ProGest robot
(Genomics Solutions, Ann Arbor, MI), and proteolytic peptides
were analyzed by LC MS/MS using LTQ XL linear ion trap
mass spectrometer (Thermo Scientific), as described in
Walian et al. (27). For the in-gel workflow, additional wash and
standard runs were introduced between samples that resulted
from processing of gel slices from a single lane of the SDS-
polyacrylamide gel, i.e. between different AP purifications.
Wash runs consisted of a blank injection followed by a 30-min
gradient containing two 5-min ramps from 2% acetonitrile to
97% acetonitrile. Protein standard runs consisted of a 25-fmol
injection of bovine 6-protein mix via a 10-ml metered injection
followed by a 14-min gradient from 2 to 50% acetonitrile. The
6-protein mix standard runs were used to assess carryover

2 M. Dong, H. Liu, J. JIn, H.E. Witkowska and M.D. Biggin., unpub-
lished observations.
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between samples (i.e. represents the background-run de-
scribed below).

Identifying Peptides from Mass Spectrometry Data

Peak lists were extracted from .raw files using the Mascot
Distiller 2.3.2.0 software (Matrix Science, London, United
Kingdom). Data were searched with an in-house Mascot ver-
sion 2.2.04 search engine (Matrix Science) against a custom
protein database containing all potential protein products
generated via 6-frame translation of the D. vulgaris genome
supplemented by frequently observed contaminants and con-
catenated with the decoy database generated by reversing all
D. vulgaris protein sequences (102,572 sequences; 9,848,210
residues) (32). Search was limited to doubly and triply charged
precursors. The following search parameters were utilized for
most searches: precursor mass tolerance of 0.8 Da for the
LTQ XL-generated and 3 ppm for the LTQ Velos Orbitrap-
generated data, respectively; fragment mass tolerance of 0.8
Da for both instruments; tryptic digestion allowing for cleav-
ages before Pro; 1 missed cleavage; fixed modification, Cys-
carbamidomethyl; variable modifications, deamidation (Asn
and Gln), Met-sulfoxide, and Pyro-Glu (N-terminal Gln). A
limited number of searches were performed with a precursor
mass tolerance of 1.5 Da and 50 ppm for LTQ XL-generated
and LTQ Velos-generated data, respectively. Precursor and
product ion mass tolerances for analysis of the QSTAR-gen-
erated data were 100 ppm and 0.15 Da, respectively. Signif-
icance threshold was set to a p value of �0.05. Protein
acceptance required the presence of at least one distinct
peptide with expectation value of �0.05. �90.5% of peptide
identifications met the “bold red” Mascot match quality crite-
ria, i.e. (i) peptide assignment to a protein with the highest
score (rank) within the potential homologs with overlapping
sequences, and (ii) a top scoring match for the spectrum.
�0.5% of peptide identifications had rank two scores. 97% of
these, however, were the only identification supporting a pro-
tein and as such were filtered out at a later step, as described
below. The remaining 25 cases supported a protein identified
by at least one peptide that met the bold red criteria and were
thus retained. All peptide matches with expectation value of
�0.05 were used for spectral counting (33, 34).

Initial MS Data Filtering

High abundance or “sticky” proteins were observed in
some cases in subsequent unrelated protein samples even
after extensive washing of the LC column between samples
(background-run). Proteins identified based on the presence
of these peptides were designated “carry-over” and removed
from subsequent analysis if the Mascot score for the protein
in the sample in question was lower than its Mascot score
from the immediately preceding background-run. This auto-
matic procedure was augmented in 21 cases by manual re-
moval of a single protein that appeared to be a contaminant

from other samples processed the same day. In addition,
peptides that cannot be unambiguously mapped to a single D.
vulgaris protein were removed from the analysis and not used
to assign the proteins’ identification. Some ambiguous pep-
tides were retained for spectral counting, however, but only if
the identified protein was also supported by at least one
unambiguous peptide. Peptide level mass spectrometry data
for the resulting partially filtered dataset are provided in sup-
plemental Dataset S2.

For our final high confidence interactome, we additionally
filtered out low signal proteins and overly abundant proteins
by removing prey proteins identified with a single-peptide hit
from the results of a given purification: ribosomal proteins
and protein chaperones (DnaK, DVU0811; GrpE, DVU0812;
GroEL, DVU1976; and GroES, DVU1977); and the following
top nine frequent fliers: PpaC (DVU1636); Mrp (DVU2109);
GroEL; DVU2405; ApsA (DVU0847); Sat (DVU1295); Pyc
(DVU1834); DnaK; and Tuf (DVU2920) (supplemental Dataset
S3). The 31 instances of a bait being detected by a single
peptide were retained at this stage, however (see supplemen-
tal Dataset S2). Skyline software (35) was used to generate a
spectral library for these baits, and the spectra have been
deposited at Panoromaweb. After this series of filtering steps,
53,506 protein pairs remained for a Matrix model (supplemen-
tal Dataset S4) and 5177 for a Spoke model (20).

Definition of Homologs and Interologs

To compare protein-protein networks from various species
as well as to project the EcoCyc reference set onto species
other than E. coli, we mapped homologs between all nine
studied species using bi-directional best Basic Local Align-
ment Search Tool (BLAST) searches (36). All predicted protein
sequences encoded by one genome were queried against a
database of protein sequences encoded by another genome
using BLASTP 2.2.9 with default options, and then the search
direction was switched. Pairs in which each protein was the
most significant hit for a query from the other genome and for
which both E-values were at least as significant as 10�4 were
mapped to each other. The supplemental Table S1 lists the
number of mapped homologs between all nine species. A pair
of PPIs (a and b) and (a� and b�) from two different species is
called an interolog if a is th emapped homolog of a� and b is
the mapped homolog of b�.

Defining Gold Standard Positive and Negative Interactions

Computational analysis was performed using curated gold
standard sets of interacting and non-interacting pairs of pro-
teins (supplemental Dataset S5). Because of the lack of truly
known interacting and non-interacting proteins in D. vulgaris,
our gold standard sets should be considered as imperfect
gold standards. 38 of the gold standard positive set are pairs
of D. vulgaris proteins that have been shown to interact in
stable complexes in low throughput experiments in this orga-

Higher Accuracy Protein Interactomes

Molecular & Cellular Proteomics 15.5 1541

http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1


nism. The remaining 500 gold-positives were E. coli inter-
ologs, i.e. D. vulgaris proteins mapped to homologous E. coli
proteins (as described above), of either PPIs from EcoCyc
version 12.0 (supplemental Dataset S6) (37) or reciprocally
confirmed PPIs from recent AP-MS experiments in E. coli (17).
This dataset was curated to account for expected differences
between E. coli and D. vulgaris complexes (e.g. a classical
RNA degradosome complex configuration was not expected
to be found in D. vulgaris due to the truncation of a scaffold
protein (38)). We also excluded all interactions with ribosomal
proteins, as this complex is atypical due to the RNA compo-
nent as well as highly abundant. This resulted in a set of 536
pairs, of which 69 were observed among the 53,506 protein
pairs for our matrix model.

Because the number of potential pairwise interactions be-
tween all proteins vastly exceeds the number of bona fide
PPIs, the number of protein pairs in a gold-negative set
should approximate the square of the number of proteins in
the gold-positive set divided by two to capture the large
number of potential pairwise combinations. Therefore, a neg-
ative gold standard set of non-interacting protein pairs was
prepared by randomizing pairs of proteins from the positive
gold standard set. We included all pairs of D. vulgaris proteins
mapping to E. coli proteins that (a) were present in a hetero-
meric complex in EcoCyc but not observed to interact with
each other in either EcoCyc or AP experiments (both recipro-
cal and non-reciprocal interactions from (17)), and (b) an in-
teraction should have been possible to detect via AP because
both bait and prey were identified in other AP pulldowns. We
excluded pairs made between ribosomal proteins and other
proteins, as well as pairs in which one partner was annotated
as a protein chaperone or protease, because the latter func-
tional categories are expected to form nonspecific complexes
with a variety of partners. This resulted in 27,542 protein pairs.
We observed a total of 1171 pairs among the 53,506 protein
pairs for the matrix model.

To compute the FDRs for our high confidence interactome
and the published bacterial Y2H and AP-MS interactomes, a
different gold standard set was used to allow a common
approach for multiple species. This gold standard set was
solely based on EcoCyc complexes without any additional
correction for D. vulgaris biology or any additional AP-MS
data. Only ribosomal proteins were excluded from the EcoCyc
dataset. The gold standard positive set was constructed out
of all EcoCyc interacting pairs, and the negative set was
constructed by taking all possible pairs of proteins in the
positive set that do not appear in the positive set of interac-
tions. The gold standard set for species other than E. coli was
created by mapping the E. coli gold standard set to interologs
in other species (supplemental Table S2).

Scoring Protein-Protein Interactions

To measure the likelihood of two proteins being involved in
a physical interaction, each protein pair is assigned values for

four scoring functions that each separate bona fide interac-
tions from background noise.

1) Dice score indicates the number of times two proteins are
observed together in a purification divided by the sum of
individual appearances of the two proteins in all purifications
(39). This feature reduces the problem of “frequent fliers,”
either “sticky” proteins that bind non-specifically to many
other proteins or abundant proteins found in many fractions.
For frequent fliers this value is close to zero, and for proteins
that form specific interactions, the value is higher.

2) The Completeness score measures the consistency of
purifications. For each purification, we define a directed graph
that includes edges from the bait to each prey and, in addi-
tion, includes edges from prey a to prey b if b was also
observed as a prey in a different purification in which a was
used as bait. The completeness score is defined as a ratio of
the number of edges in the graph to the total number of
possible edges in the graph. This score is computed for each
purification, and each pair of proteins is assigned the maxi-
mum value over all the purifications in which both proteins
appeared. The completeness score is a generalization of the
clustering coefficient (20).

3) The normalized spectral abundance factor (NSAF) filters
out prey observed at low abundance. For a given purification,
p, NSAF for protein v is defined as shown in Equation 1 (40),

NSAF v
p �

SCv/Lv�SCi/Li

(Eq. 1)

where SCv is the number of spectral counts for protein v; Lv is
the length of protein v, and index i iterates over all proteins in
the given purification. For the matrix model, the score for a
pair of proteins (v,u) is extended to Model 1,

mNSAFp�v,u�

� � NSAFu
p if v is the bait in p

NSAFv
p if u is the bait in p

min�NSAFu
p,NSAFv

p� if u and v are both prey

mNSAF�v,u) � maxp	mNSAFp�v,u�


Model 1
4) For absolute normalized abundance (ANA), this metric is

similar and complementary to NSAF. Unlike NSAF, it is not
normalized with respect to the sum of spectral counts per
purification, and therefore it estimates the absolute abun-
dance across all purifications as shown in Model 2,

ANAv
p � SCv/Lv

mANAp�v,u� � � ANAu
p if v is the bait in p

ANAv
p if u is the bait in p

min�ANAu
p, ANAv

p� if u and v are both prey

mANA(v,u) � maxp	mANAp�v,u�


Model 2
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Inference of High Confidence Protein-Protein Interactions

Using the gold standard set, we trained a logistic regression
to compute the likelihood scores for all pairs of proteins
observed together in all the purifications. Such a strategy
allows relative weights for our four scoring function to be
derived and the result to be summarized with a single likeli-
hood score. Similar approaches have been previously pro-
posed using either spectral counts (40–42) or co-purification
statistics for pairs of proteins (14, 43), although here we use a
combination of these two approaches and somewhat modi-
fied metrics. We tested three types of cross-validation to
reduce learning bias (44) as follows: 1) 10-fold cross-valida-
tion; 2) leave-one-out cross-validation; and 3) leave-one-
operon-out cross-validation, in which at each iteration of
cross-validation all proteins from a given operon are selected
and all their intra-operon and inter-operon interactions are
used for validation and the rest are used for training. We
observed only small differences in the results of these three
cross-validations, and the third was used for all the results
presented here as it is the more stringent.

Despite joining the four scoring functions described above
into a single classifier, we still observed that (probably due to
the limitations of our gold standard set and the scoring func-
tions) some fraction of PPIs received high combined scores
even though some of the most important individual feature
scores were very low. Because of this, we applied the follow-
ing filtering steps.

(i) Feature-based Filtering—(a) Remove pairs of proteins that co-
appeared together in fewer than 10% of the purifications in which
either of the proteins appeared individually, i.e. the dice score has to
be higher than 0.1. (b) Remove pairs of proteins for which mNSAF
score (defined above) is less than 5% for at least of one of them. This
mostly eliminates proteins from very large pulldowns, which were
likely the result of experimental error, where some proteins appear at
very low abundance. This resulted in 1136 PPIs with an FDR of �35%
(supplemental Dataset S7).

(ii) Classification Based Filtering—To obtain a higher confidence set
of PPIs, we applied a threshold to the confidence scores, as com-
puted by logistic regression that gives 459 matrix model PPIs at 17%
FDR and 352 spoke model PPIs at 10% FDR upon cross-validation
(supplemental Dataset S8).

Experimental Design and Statistical Rationale

This project determines high confidence PPIs using a logis-
tic regression that combines four different features from the
mass spectrometry data, as described above. For this reason,
no single aspect of the mass spectrometry data, such as
reproducibility between technical or biological replicas, pro-
vides the most telling measure of accuracy. Instead, the fun-
damental criteria for judging the accuracy of our high confi-
dence PPIs are the FDRs calculated using gold standard and
gold-negative protein pairs, see above, and the additional
quality metrics shown under “Results.” Our analysis indicates
that the PPIs in our two high confidence interactomes are
comparable in accuracy to those in three benchmark sets of

validated PPIs: the EcoCyc dataset and AP-MS and Y2H PPIs
that have been reciprocally confirmed in biological replicas as
bait prey and prey bait pairs. In contrast, by the same suite of
criteria, nine previously proposed bacterial interactomes are
much less accurate.

The following suggests that many protein pairs that are
highly reproducible between replica affinity purifications are
nonetheless false positives, likely because at least one of the
pairs is a highly abundant contaminant in many purifications.
In our unfiltered data, we observed 140 reciprocal interac-
tions, including 35 pairs that are encoded in the same operon
(25%). However, only 82 of these reciprocal pairs are present
in our final set of 459 high confidence PPIs. Of the remaining
58, only one is a same-operon pair, suggesting that these 58
reciprocal pairs are mostly false positives. Conversely, of the
377 high confidence PPIs that were not reciprocally confirmed
17% are same operon pairs, and therefore the non-reciprocal
high confidence PPIs are likely almost as accurate a set as the
140 reciprocally confirmed PPIs. Reciprocally confirmed PPIs
are thus a useful but by no means decisive indication of bona
fide interactions. Instead, by using logistic regression to con-
sider multiple features of the mass spectrometry data at once,
frequent fliers and other false positives can be identified more
effectively.

That said, we have determined the reproducibility of our
AP-MS assay at several steps. There are two measures of the
technical reproducibility between different mass spectrometry
assays of the same affinity-purified sample of eluted proteins.
73% of the 1628 instances where a protein was detected after
elution from an SDS-polyacrylamide gel were also detected
after in-solution digestion from the same affinity purification.
For the 99 cases where in-solution digests were performed in
replicas on the same set of 46 eluted proteins, the mean
overlap in proteins identified between replicas was 71%.

There also two measures for reproducibility between bio-
logical replicas. The first is that for the 178 instances where
the same bait was affinity-purified two or more times (76
different bait proteins), the mean overlap in proteins identified
between replicas was 65%. The second is given by the 34%
reciprocal confirmation percent among high confidence PPIs,
which is considerably higher than the 0.3–9.8% reciprocal
confirmation percent seen in the nine previously published
AP-MS and Y2H interactomes, see under “Results.”

Identifying Low Confidence Protein Pair Sets

Single Peptide Hit—All identified proteins, including those whose
identification was based on a single unique peptide, were included in
the analysis. The same pipeline and criteria for selecting high confi-
dence set were used otherwise.

Ribo-other—PPIs involving ribosomal proteins and having regres-
sion score satisfying the selection of the high confidence set defined
above were selected. Among these pairs only those that have one
ribosomal protein and the other non-ribosomal protein were finally
considered for this set.

Higher Accuracy Protein Interactomes

Molecular & Cellular Proteomics 15.5 1543

http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1


No Thresholds—We did not apply the threshold on the dice and
mNSAF regression features (see under “Feature-based Filtering”)
and selected a subset of high scoring PPIs based on the regression
scores that resulted in 17% FDR, similar to our high confidence set.

High FDR—Pairs that were part of the partially filtered set of 1136
PPIs described above were excluded from the high confidence set by
the 20% FDR threshold.

Gene and Protein Annotations

Gene names, protein names, protein function annotation,
and gene to operon assignment are taken from the Microbe-
sOnline database (45). Cellular localization for D. vulgaris and
E. coli proteins was taken from PSORTb (46, 47).

Other Bacterial Interactome Data

We have identified nine bacterial AP-MS or Y2H screens in
the literature. Where a screen is reported in more than one
paper by the same group, we have taken the interactome data
from the latest, most complete report of the screen. One
AP-MS network for E. coli was taken from supplemental Table
S6 of Hu et al. (17), and the reciprocal PPIs from this study
were identified using supplemental Table S4 from Hu et al.
(17) (supplemental Dataset S9). In addition, from private cor-
respondence with Hu et al. (17), we obtained their complete
LC MS “in-solution” set of identified peptides, which was
used for peptide statistics as well as to obtain our revised high
confidence interactome for E. coli. A second AP-MS interac-
tome of E. coli generated by a different group was taken from
supplemental Table S1 of Arifuzzaman et al. (18), including a
list of reciprocal PPIs (supplemental Dataset S10). The AP-MS
interactome of Mycoplasma pneumoniae was taken from sup-
plemental Table S3of Kuhner et al. (16) (supplemental Dataset
S11), and reciprocal PPIs were taken from their supplemental
Table S2 and reduced to those pairs that appear in supple-
mental Table S3. The Treponema pallidum Y2H interactome
and its reciprocals were taken from supplemental Table S1 of
Titz et al. (9), subset TPA-HCA (supplemental Dataset S12).
Campylobacter jejuni Y2H PPIs having a score above 0.5, i.e.
the high confidence set as defined by the authors, and the set
of reciprocal PPIs were taken from supplemental Table S13 of
Parrish et al. (7) (supplemental Dataset S13). The Y2H inter-
actome of Bacillus subtilis was taken from supplemental Table
S6 of Marchadier et al. (6) (supplemental Dataset S14). No
information on reciprocal PPIs was available for this study.
The E. coli Y2H interactome and its reciprocal PPIs were
taken from supplemental Table S3 of Rajagopala et al. (4)
(supplemental Dataset S15). The list of reciprocal PPIs was
extended with pairs that were confirmed with two types of
vector of fusion to an activator domain. The Helicobacter
pylori Y2H interactome was taken from supplemental Table
S2 of Hauser et al. (3), with reciprocal PPIs taken as those
having an overlap value of at least two (supplemental Dataset
S16). The Synechocystis sp. Y2H interactome, PPIs having
interaction category “A,” and its reciprocals were taken from

supplemental Table S2 of Sato et al. (8) (supplemental Dataset
S17). For all data sets, we kept only heterologous interactions;
no homomeric pairs were considered.

Calculating Overlap between Two PPI Networks

Because different studies could target different subsets of
the proteome, we calculated percent of overlap between
two networks relative to the common proteins only. Given
two sets of PPIs, each of them is reduced to pairs for which
each protein appears in the other set. Then the overlap is
defined as a fraction of common PPIs relative to the re-
duced sets.

Calculating the Number of Proteins Detected Per Bait in Non-
filtered MS Data

To calculate the number of preys detected per bait in the
previously published AP-MS screens, we used data that were
as close as possible to the raw peptide data identified as
significant hits by an MS data search engine, i.e. the datasets
used had not been filtered based on criteria or features such
as a co-purification score (17) or the machine learning ap-
proach used in our study. For data from Arifuzzaman et al.
(18), we used their supplemental Table S1, even though some
frequent fliers identified by the authors from the control ex-
periments were not present in that table. For data from Kuhner
et al. (16), we used their supplemental Table II. For the Hu et
al. (17), we obtained the data on all peptides detected by
“in-solution” LC-MS from personal correspondence with the
authors.

Revised High Confidence Set of E. coli PPIs

To the in-solution LC MS data collected for E. coli (17), we
applied our pipeline in the same manner used to obtain our
high confidence PPIs for D. vulgaris. Single peptide hits as
well as ribosomal and chaperons (DnaK, b0014; GrpE, b2614;
GroEL, b4143; and GroS, b4142) were removed. We used the
same feature-based filtering and thresholds. Then the regres-
sion score cutoff was selected at 20% FDR to obtain 391
matrix model PPIs (supplemental Dataset S18).

Calculating False Negative Rates

The false negative (FN) rate was estimated using the Eco-
Cyc gold-positive set from which both ribosomal and flagella
related PPIs were excluded. There are 301 D. vulgaris inter-
ologs corresponding to this set. Among these 301 pairs, 79
had at least one protein tagged as a bait in our experiments
and the second protein detected in at least one purification.
Out these 79, 41 are found among the 53,406 potentially
interacting pairs in the unfiltered matrix model, giving an
estimated experimental FN rate of 100�(1 � 41/79) � 48%. Of
the 41 potential protein pairs, 24 are reported in our high
confidence set, implying an analysis pipeline FN rate of 41%
and an overall FN rate of 69%. Given that our high confidence
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set of 459 PPIs has �20% false positives, 1196 PPIs should
have been detected from the 957 tagged bait purifications we
conducted. Using similar calculations for as for the Hu et al.
(17) in-solution E. coli AP-MS dataset, the experimental and
computational FN rates are 4 and 17.6%, respectively. As-
suming our revised set of 391 PPIs contains 20% false pos-
itives, the number of E. coli PPIs that are potentially detecta-
ble in this experiment is 716.

To extrapolate to the number of PPIs detectable if all pro-
teins were tagged as baits, we observe that for both the D.
vulgaris and E. coli data, the relation between the number of
newly observed proteins with each new purification correlates
linearly with the number of high confidence PPIs confirmed by
these purifications, see under “Results.” Thus, for all 3399 D.
vulgaris and 4151 E. coli proteins, and assuming a 20% FDR
and the appropriate FN rate as described above, we esti-
mated there are 3067 and 3002 PPIs for D. vulgaris and
E. coli, respectively.

Estimating the FDR Using Gold Standards from Rajagopala
et al. (4)

Rajagopala et al. (4) tested 212 gold-positive and 500 gold-
negative protein pairs, detecting 44 and 4, respectively, as
interacting in their Y2H assay. If one assumes a similar false
positive rate for an appropriately sized gold-negative set of
�90,000 pairs (�(4242/2)-212), this implies an FDR for the
Rajagopala et al. (4) interactome of �80%.

Visualization of Biotin Binding Proteins

Wild-type D. vulgaris (ATCC 29579) and D. vulgaris
CAT400742 (DVU2224-STF-His6) were grown at 30 °C in an
anaerobic growth chamber (Coy Laboratory Product, Inc.,
Grass Lake, MI) in rich liquid MOYLS4 medium for 20 h (10%
inoculum) (48). G418 was added to a final concentration of
400 �g/ml for CAT400742. E. coli BW25113 cells were grown
overnight in LB media. Cells from 1-liter cultures were har-
vested by centrifugation. For affinity blotting, cells were lysed
at room temperature with 10 ml of Bacteria Protein Extraction
Reagent (Thermo Scientific) containing 200 �l of 50� prote-
ase inhibitor and 2 �l of Benzonase nuclease (Sigma). Cell
lysate was cleared by centrifugation for 30 min at 16,000 � g.
250 �l of a 50% slurry of anti-FLAG agarose beads was
added to 10 ml of lysate, and the mixture was incubated for
3 h at 4 °C. Beads were separated by centrifugation and
washed in 5� 1 ml of 50 mM Tris, pH 8.0, 150 mM NaCl buffer.
50 �l of beads were boiled in 1� SDS, and proteins were
separated on 15% Tris glycine gel. Proteins were transferred
on PVDF membrane and blocked overnight in 5% milk. Mem-
brane was washed five times in PBS with 0.05% Tween 20
buffer (PBST), and membrane was incubated with streptavi-
din-horseradish peroxidase polymer conjugate (Sigma) di-
luted 1:2500 in PBST at room temperature for 1 h (49). Mem-
brane was washed five times with PBST and incubated for 5

min in SuperSignal West Substrate working solution (Thermo
Scientific). Membrane was exposed to x-ray film to visualize
biotinylated proteins.

Data Reporting

The protein interactions from this publication have been
submitted to the IMEx consortium through IntAct and
assigned the identifier IM-22740 (50). All raw MS files
and associated Mascot search engine results files were
uploaded at the UCSD Center for Computational Mass
Spectrometry, MassIVE, and can be downloaded on line
(MassIVE identifiers: MSV000079275, MSV000079276,
MSV000079277). A spectral library containing annotated
MS/MS spectra for baits and virtually all preys identified on
the basis of a single peptide has been deposited at the
Panoramaweb site (51). These data can be viewed at Pano-
rama Public, project title: “Bacterial interactomes: interacting
protein partners share similar function and are validated in
independent assays more frequently than previously re-
ported”. A small minority of single peptide hit spectra that
could not be uploaded to Panoramaweb are provided in sup-
plemental Dataset S19.

RESULTS

AP-MS Screen of D. vulgaris

D. vulgaris is an obligate anaerobe that had previously been
challenging to use to purify affinity-tagged proteins. There-
fore, we first tailored high throughput genetic modification,
immunological screening, cell culture, and affinity purification
protocols for this bacteria (Fig. 1) (28). Out of a set of genes
prioritized for screening (see “Experimental Procedures”),
1401 were successfully fused with a tandem affinity tag (sup-
plemental Dataset S1), and 957 of the resulting fusion proteins
were detected as baits in AP-MS experiments along with an
average of 7.7 co-purifying prey proteins per purification (sup-
plemental Dataset S2 and Fig. S1). The proteins detected tend
to be among those translated from highly expressed mRNAs
(supplemental Figs. S2 and S3) and included members of all
but one of the 17 functional categories defined by The Insti-
tute of Genome Research (TIGR roles) (supplemental Fig. S4)
(52).

Inferring High Confidence Protein-Protein Interactions
from MS Data

In AP-MS experiments, many proteins that are not genuine
interacting partners will nonetheless co-purify with a tagged
bait protein (16, 17). To overcome this contamination prob-
lem, we first filtered the data to remove prey proteins detected
by only one peptide, the nine proteins most frequently ob-
served by MS in purifications (supplemental Dataset S3), and
ribosomal proteins and chaperonins. The spoke model for
interpreting AP-MS data assigns a potential interaction be-
tween each bait and all of the prey proteins that co-purify with
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it (Fig. 2A) (20). The matrix model (20) extends the spoke
model by including all pairwise interactions between the prey
identified in a given purification (Fig. 2A). After our initial
filtering, we obtained 53,406 potentially interacting pairs for
the matrix model (supplemental Dataset S4) and 5177 for the
spoke model.

Each of the 53,406 putative protein pairs was described
using four features based on the MS data (see “Experimental
Procedures”). Two features, NSAF and absolute normalized
abundance, use MS spectral counts normalized by polypep-
tide length to down-weight instances where one or both part-
ners are present at lower relative or absolute abundance. The
other two features, dice and completeness, are used to favor
protein pairs that co-occur in the same purifications more
commonly than they are found in separate purifications. In
addition, based on published evidence, a set of 69 “gold
standard-positive” protein pairs were identified that are likely
bona fide PPIs and a set of 1171 “gold standard-negative”
protein pairs that likely do not interact (see “Experimental
Procedures” and supplemental Dataset S5). The four features
each give partially separated distributions for the gold stan-
dard-positive and -negative protein pairs (supplemental Figs.

S5–S8) and were combined using a logistic regression to give
a single score for each protein pair.

After imposing thresholds on the features NSAF and dice, a
set of 1136 protein pairs was identified (see “Experimental
Procedures” and supplemental Dataset S7). The accuracy of
this set of pairs at different points down the logistic regression
rank list was then estimated using the gold standard-positive
and -negative sets with cross-validation, see “Experimental
Procedures” (Figs. 2B and supplemental Fig. S9). For the
matrix model, we identified 459 PPIs involving 469 proteins at
17% FDR (Fig. 2C and supplemental Dataset S8), and for the
spoke model, we identified 352 PPIs at 10% FDR. Because
the spoke and matrix models are similar (supplemental Fig.
S10), we define the PPIs from the matrix model as our high
confidence set. The resulting network of interactions is shown
in Fig. 3.

An FDR, however, is necessarily an approximation as it
assumes that the gold standard sets used contain no errors
and that they have properties typical of the set of bona fide
PPIs present in the original unfiltered dataset. Given that we
do not know the true set of PPIs in any organism, there is no
guarantee that these conditions are met. Consequently, we

FIG. 1. High throughput affinity purification and mass spectrometry pipeline in D. vulgaris. Schematic diagram showing the stages of
the high throughput pipeline, including suicide vector construction, recombinant strain generation, affinity purification, mass spectrometry, and
data analysis to annotate interactions along with corresponding statistics.
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have adopted the following five additional metrics to assess
the quality of our sets and other sets of proposed PPIs.

Percentage of Same Operon PPIs—This measures the frac-
tion of protein pairs whose members are encoded in the same
operon.

Fold Enrichment in the Same TIGR Role—This measures
the fraction of protein pairs, both of whose members share
the same TIGR role annotation, were divided by the fraction
of the same TIGR role pairs that are found in gene pairs
chosen at random from the genome.

Percentage of PPIs in AP-MS—This measures the fraction
of protein pairs that are found in at least one AP-MS interac-
tome other than the dataset being assessed.

Percentage of PPIs in Y2H—This measures the fraction of
PPIs in a given set that are found in at least one Y2H inter-
actome other than the dataset being assessed.

Reciprocal Confirmation Percent—This measures the pro-
tein pairs for which interaction was reciprocally confirmed
within the same AP-MS or Y2H study as both bait-prey and
prey-bait pairs, as a percent of pairs in the interactome for
which both members were tested as baits.

To provide a benchmark for the properties of well charac-
terized bacterial complexes, we identified three “benchmark”
PPI datasets. One comprises the complexes in the EcoCyc
database, a manually curated dataset based on low through-
put experiments from the literature (supplemental Dataset S6)
(53). The other two are for the �3% of protein pairs that have
been confirmed as reciprocal PPIs in either bacterial Y2H or
AP-MS interactomes (Fig. 4 and supplemental Table S3).
Encouragingly, our high confidence PPIs score within the
same range as the benchmark datasets for our first four
metrics, never having a lower value (Fig. 4), although the fifth
metric is not applicable to the benchmark sets.

The accuracy of our high confidence PPIs is further sup-
ported by the fact that they include many previously charac-
terized interactions or are consistent with other data (see

supplemental text and supplemental Figs. S11–S13 for further
discussion). For example, interactions previously identified in
low throughput studies of D. vulgaris or other bacteria are
observed among components of dissimilatory sulfite reduc-
tase, quinone-interacting membrane-bound oxidoreductase,
flavin oxidoreductase, and RNA polymerase. Novel high con-
fidence PPIs supported by other data include associations
between an uncharacterized protein, DsrD and DsrAB;
FlxABCD and heterodisulfide reductase A; two proteins of
unknown function and RNA polymerase; and an uncharacter-
ized protein, a carbon storage regulator, and flagellin proteins.
In addition, of the 11 high confidence PPIs that include a
protein encoded on the native 200-kb D. vulgaris plasmid
pDV1, only one includes a protein encoded on the much
larger bacterial chromosome, a result consistent with a low
FDR.

Lower Confidence Sets of Protein Pairs

We next explored whether it is possible to detect additional
PPIs by using alternative criteria to interrogate the raw mass
spectrometry data. Four sets of “low confidence” protein
pairs were identified (Fig. 4 and “Experimental Procedures”).
The first three were captured as matrix models at �20% FDR
and included many PPIs from our high confidence set, but
here we only consider those unique pairs that were found in
addition to the high confidence PPIs. The four sets are (i)
“single hit” prey proteins that are detected by only one pep-
tide; (ii) ribosomal and chaperonin proteins, but limited only to
“ribo-other” protein pairs between a ribosomal or a chaper-
onin protein and another protein; (iii) “no threshold” pairs that
were excluded by the thresholds placed on the features NSAF
and dice; and (iv) the 677 “high FDR” protein pairs excluded
from our high confidence set at local FDRs between 20 and
61%.

Compared with our high confidence PPIs and the three
benchmark datasets, the low confidence sets are each less

FIG. 2. Evaluation of PPI inference for two AP-MS representation models. A, schematic representation of two possible models, spoke
and matrix, used to annotate PPIs from AP-MS experiments. B, precision/recall curve as measured from the cross-validation procedure. True
positives (TP) (correctly inferred gold standard positive interactions), false positives (incorrectly inferred as interacting gold standard negative
interactions), and FN (not inferred as interacting gold standard positive interactions). C, precision as the function of the number of PPIs inferred
by the logistic regression classifier.
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enriched in protein pairs that are encoded in the same operon,
reciprocally confirmed, or found in Y2H interactomes or, with
one exception, in AP-MS interactomes (Fig. 4). The single hit
and ribo-other sets are likely to be largely false positives as
they also show no enrichment for pairs with similar functions
(Fig. 4). This is not unexpected as single peptide hits are
present at lower abundance in purified material and thus are
more likely to be incompletely removed contaminants, and

ribosomal proteins are highly expressed in cells (supplemental
Fig. S3) and thus also likely to be difficult to completely
remove during purification. The “no threshold” and “high
FDR” sets, in contrast, may contain many functional but lower
affinity interactions. The no threshold pairs are almost as
strongly enriched in the same TIGR role protein pairs as our
high confidence set (Fig. 4). Given that this strong enrichment
is unlikely to occur by chance (p value � 0.05 after correction

Hypothetical proteins, unknown or unclassified function

DNA metabolism
Transcription
Biosynthesis of cofactors, prosthetic groups, and carriers
Regulatory functions
Cellular processes
Cell envelope
Energy metabolism

Protein fate
Signal transduction
Protein synthesis
Purines, pyrimidines, nucleosides, and nucleotides
Central intermediary metabolism

Amino acid biosynthesis
Transport and binding proteins

Fatty acid and phospholipid metabolism

FIG. 3. D. vulgaris protein interaction network. All 459 interactions present in the high confidence interaction network are shown. Spoke
model (bait-to-prey) interactions are indicated with solid arrows, and matrix model (prey-prey) interactions are shown with dashed lines.
Gold-positive interactions inferred from 10-fold cross-validation are shown in purple color. All proteins are colored according to their assigned
TIGR role as indicated. Gray areas enclose complexes discussed in the supplemental text associated with sulfate reduction and energy
conservation (a1–a3), cofactor biosynthesis (b1–b3), RNA synthesis and degradation (c1–c3), motility (d1–d3), megaplasmid encoded complexes
(e1–e5), and novel and uncharacterized complexes (f1–f2).

Higher Accuracy Protein Interactomes

1548 Molecular & Cellular Proteomics 15.5

http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1


for multiple testing), it is reasonable that most no threshold
pairs are functional. The lower reproducibility with which
these PPIs are observed either in other interactomes or as
reciprocal PPIs could be because low affinity interactions are
harder to observe. Similarly for the high FDR set, pairs be-
tween 500 and 1000 on the regression score rank list remain
enriched in same TIGR role pairs, but they show little enrich-
ment in the same operon pairs, pairs found in other interac-
tomes, or reciprocally confirmed pairs (Fig. 5), suggesting
again that there is a class of functional associations among
proteins that differ from those that predominate our high
confidence set.

Estimating a False Negative Rate

Although we cannot identify additional PPIs with properties
similar to those in our high confidence set, it is possible to
estimate the percent of such PPIs that we have failed to
detect by calculating the false negative rate using gold stand-
ard positive PPIs (see “Experimental Procedures”). From the
estimated false negative rate of 69%, the number of PPIs that
should have been detected in our screen of 957 tagged baits
is �1196 versus the 459 we report. Extrapolating to a screen
in which all genes are tagged, we estimate that one might
detect �3000 PPIs with characteristics similar to both our
high confidence set of PPIs and the EcoCyc PPIs (see “Ex-
perimental Procedures”; supplemental Fig. S14).

Comparison with Other Bacterial AP-MS Interactomes

We next compared our high confidence interactome for D.
vulgaris with the three previously published bacterial AP-MS
networks, two for E. coli (17, 18) and one for M. pneumoniae
(16) (see “Experimental Procedures”). Our interactome is dra-
matically less connected than these other networks (Fig. 6
and supplemental Table S4). For example, the number of

protein pairs per bait and the size of linked complexes are
both �8-fold lower in our interactome compared with the
other three (supplemental Table S4). In addition, the protein
pairs in our interactome have very different qualities com-
pared with the other AP-MS networks (Fig. 7). For example,
using a common gold standard, the FDR of our interac-
tomes is 29% versus 66–91% for the other networks. In
addition, same operon protein pairs, same TIGR role pairs,
reciprocal PPIs, and pairs found in other bacterial interac-

% same 

operon

Fold same

TIGR role

% in 

Y2H 

% in other

AP-MS

EcoCyc  (1,549) 54.0% NA 10.0 11.0% 14.0%

AP-MS reciprocals  (389) 29.0% NA 6.4 22.0% 24.0%

Y2H reciprocals  (224) 18.0% NA 6.5 57.0% 44.0%

21.0% 34.0% 6.5 16.0% 24.0%

Single peptide hit  (328) 2.7% 3.8% 2.0 4.9% 4.3%

Ribo-other  (109) 0.0% 0.0% 0.7 0.0% 15.0%

No thresholds  (127) 2.4% 8.4% 5.4 7.0% 3.9%

High FDR  (677) 2.2% 2.3% 2.5 2.6% 9.5%

Benchmark

Datasets

D. vulgaris
Datasets

Reciprocal

confrm. %

High Confidence  (459)

FIG. 4. PPI quality metrics for benchmark datasets and high and low confidence D. vulgaris protein pair sets. The top three rows show
metrics for benchmark bacterial datasets: the EcoCyc complexes (53) and protein pairs that have been reciprocally confirmed in either four
AP-MS studies, including ours, or in six Y2H studies (supplemental Table S3). The remaining rows show metrics for our high confidence set
and the four low confidence sets of protein pairs described in the text. The numbers of protein pairs in each set are given in parentheses. The
columns shows from left to right are as follows: percent of pairs whose members are encoded in the same operon; reciprocal PPI confirmation
percent; fold enrichment of pairs for which both members have the same TIGR role over that expected among randomly chosen pairs; percent
overlap with a combined set of interologs from the six bacterial Y2H interactomes; and percent overlap with a combined set of interologs from
the three published bacterial AP-MS interactomes (see “Experimental Procedures” for more details).
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FIG. 5. PPI quality metrics for regression score cohorts. Pre-
dicted interactions are sorted by the logistic regression score (x axis)
for the 4000 highest scoring matrix model interactions in the absence
of any regression feature threshold. The y axis shows the relative
enrichment of protein pairs that are encoded in the same operon
(maroon) that is reciprocally confirmed (green), is found in Y2H stud-
ies (red) and in other AP-MS studies (blue), and is shared the same
TIGR role (gold). Enrichment is expressed as a ratio over the fre-
quency expected for pairs randomly chosen from the genome, with
the horizontal dashed line indicating the background frequency ratio
of 1. The values are calculated for a series of windows of 500 protein
pairs, except that the first n �250 points the window size is n 
250.

Higher Accuracy Protein Interactomes

Molecular & Cellular Proteomics 15.5 1549

http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1


tomes are, with one partial exception, substantially more
enriched in our high confidence set than in the other inter-
actomes (Fig. 7). The partial exception is for M. pneu-

moniae. These protein pairs, however, were chosen using
genomic proximity data (16), which could well have intro-
duced a selection bias.

(C) E. coli  Hu revised  391 PPIs

(F) E. coli  Hu  5,993 PPIs  (E) E. coli Arifuzzaman  11,172 PPIs

 (B) D. vulgaris  Shatsky  459 PPIs

(D) M. pneumoniae  Kuhner  1,058 PPIs  

(A) E. coli  EcoCyc  1,549 PPIs

FIG. 6. Interactome connectivity of EcoCyc PPIs and proposed bacterial AP-MS interactomes. Visualization of interactomes for
manually curated protein complexes in the EcoCyc database (A), the high confidence AP-MS interactions inferred in this study for D. vulgaris
(B) and E. coli (C), the published AP-MS interactomes for M. pneumoniae (16) (D), and the E. coli (E and F) (17, 18).
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The different properties of our interactomes versus those
proposed previously could result from differences in data
quality or how the data was analyzed. The following suggests
that differences in data analysis methods are chiefly
responsible.

1) 23% of PPIs in the three previous AP-MS interactomes
include a ribosomal protein paired with a non-ribosomal pro-
tein. Only 0.4% of these pairs, however, were reciprocally
confirmed in a given study; only 1.1% are encoded in the
same operon; only 1.1% are present in at least one bacterial
Y2H interactome; and they are only 1.03-fold more frequently
annotated with the same TIGR role than expected for ran-
domly selected pairs of genes. The inclusion of ribo-other
pairs in the published bacterial AP-MS interactomes thus
significantly affects the quality metrics for the complete
interactome.

2) An “in solution” MS dataset of 3361 PPIs from the Hu et
al. (17) AP-MS study of E. coli used biochemical and MS
methods closest to ours and thus was most appropriate for
complete reanalysis. Using our data filtering and analysis
methods to identify high confidence PPIs from this dataset,
only 391 matrix model PPIs are identified at 20% FDR (sup-
plemental Dataset S18). These PPIs have network connectiv-
ity and PPI quality metrics scores similar to those of our high
confidence D. vulgaris interactome and the three benchmark
datasets (Figs. 6 and 7 and supplemental Table S4). In con-
trast, the 2970 protein pairs from the Hu et al. (17) dataset that
were not selected by our reanalysis have metric scores similar
to protein pairs from the three published bacterial AP-MS
interactomes (supplemental Table S5). In addition, several
hundred pairs that were excluded just below the 20% FDR
threshold in our reanalysis tend to share the same TIGR role
but are not to be encoded in the same operon, found in other
interactomes, or reciprocally confirmed (Fig. 8, regression

score ranks 500–1,500). Finally, based on our estimate for the
false negative rate, �716 PPIs could in principle be detected
from the Hu et al. (17) in solution dataset, versus the 3361 PPIs
reported by Hu et al. (17) and the 391 identified in our re-analysis
of these data (see under “Experimental Procedures”). Thus, by
reanalyzing the Hu et al. (17) MS data, we can achieve results
very similar to those obtained using our D. vulgaris data.

3) Although Hu et al. (17) used a gold-positive set that,
similar to ours, was based on low throughput experiments,
their gold-negative set was built differently. It consisted of
pairs comprising a cytoplasmic protein (CY) and either a
periplasmic (PE) or an outer membrane (OM) protein. There
are, however, seven times fewer OM and PE proteins than CY
proteins, and OM and PE proteins are detected by mass
spectrometry with half the efficiency of CY proteins (see sup-
plemental Fig.S1b in Ref.17). Gold standard negatives esti-
mate the frequency of contaminating proteins that are incom-
pletely removed during purification. If a member of each
negative pair is, on average, of lower abundance or less
detectable than the positive proteins, this frequency will be
underestimated. To reduce the possibility of such a bias, our
gold-negative set comprised non-interacting pairings be-
tween proteins from our gold-positive set. To test the impact
of the difference between ours and the negative sets of Hu et
al. (17), we constructed a negative set identical in size to our
original one, but used pairs between D. vulgaris CY proteins
and either PE or OM proteins. Using this set together with our
usual gold standard positive set, the recalculated FDR of our
high confidence interactome of 459 PPIs is 10% (versus 17%
previously), and the FDR for the set of 1136 protein pairs input
to the regression is 22% (versus 35% previously). Thus, a
gold-negative set built of CY pairs underestimates the FDR.

Comparison with Bacterial Y2H Interactomes

We have also compared our D. vulgaris high confidence
interactome and our revised version of the Hu et al. (17) E. coli
interactome to Y2H networks from six bacteria: E. coli (4), H.
pylori (3), T. pallidum (9), C. jejuni (7), B. subtilis (6), and
Synechocystis sp. (Fig. 7 and supplemental Fig. S15 and
Table S6 and “Experimental Procedures”) (8). These six Y2H
interactomes are at least severalfold less well enriched in same
operon, same TIGR role, and reciprocal protein pairs than are
our two high confidence networks or the benchmark datasets
and have substantially higher FDRs (Fig. 7). By these four PPI
quality metrics, the Y2H networks instead closely resemble the
three published AP-MS interactomes. Two other quality met-
rics, however, reveal differences among the Y2H interactomes.
The Y2H networks of E. coli, H. pylori, and Synechocystis are
more similar to our high confidence sets when judged by the
percent of protein pairs found in other interactomes and overall
network connectivity (Fig. 7 and supplemental Table S6), al-
though the other Y2H interactomes resemble the published
AP-MS networks. Thus, there is some heterogeneity in the
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FIG. 8. PPI quality metrics for regression confidence score co-
horts for the Hu et al. (17) revised dataset. The values plotted were
determined as described in Fig. 5 except that information from our
reanalysis of Hu et al. (17) data are shown.
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quality of the protein pairs between the Y2H datasets, but
despite this, all differ in important regard to our high confidence
AP-MS networks and the benchmark sets.

DISCUSSION

Accurately defining the spectrum of PPIs in an organism is
challenging, in part because there is a poor overlap between
PPIs proposed in different studies (Fig. 7) (3, 10). For example,
even when overlap is computed only for proteins present in
both an E. coli AP-MS (17) and an E. coli Y2H (4) interactome,
the overlaps are only 13 and 24%, respectively. Such poor
agreement could result from the different specificities of each
method for detecting classes of PPIs (3, 54), high false posi-
tive rates (55, 56), or high false negative rates. A further
complication is that there are many non-functional PPIs that
are not under evolutionary constraint but that result because
short amino acid sequences that bind at low affinity evolve
frequently by chance (57). Such interactions are hard to dis-
tinguish from genuine false positives because both fail to
display characteristics helpful in validating functional PPIs,
such as having related functions.

With the above challenges in mind, we have conducted an
AP-MS survey of the sulfate-reducing bacterium D. vulgaris
and have reanalyzed nine Y2H and AP-MS screens for other
bacteria. Using a more stringent data analysis strategy than
employed previously, we have identified 391 and 456 high
confidence PPIs for E. coli and D. vulgaris, respectively, many
of which are supported by low throughput data from the
literature (supplemental text and Figs. S11–S13). The PPIs we
identified have dramatically different properties from previous
Y2H and AP-MS interactomes. Compared with these other
interactomes, our two high confidence networks are smaller,
much less connected, and have a higher fraction of PPIs
homologous to those in other interactomes (Figs. 6 and 7 and
supplemental Fig. S15). In addition, the protein pairs in our
networks have lower FDRs, are more frequently confirmed as
reciprocal PPIs, and are more commonly comprised of part-
ners encoded in the same operon or sharing the same TIGR
role (Fig. 7). By these same metrics, three benchmark data-
sets (PPIs in the EcoCyc database and the �3% of PPIs that
have been reciprocally confirmed in AP-MS or Y2H studies)
are much more similar to our high confidence interactomes
than to the complete versions of the published bacterial PPI
networks (Fig. 7).

These striking differences suggest that only a minority of
protein pairs in the other interactomes are stable interactions
of the sort captured in our high confidence sets and the
benchmark sets. Of the remaining pairs, several hundred may
be lower affinity, functional interactions because some lower
confidence protein pairs excluded from our interactomes tend
to share the same TIGR role, while being rarely found in other
interactomes, reciprocally confirmed or encoded in the same
operon (e.g. Figs. 4, 5, and 8). Our interpretation is that these
pairs interact, but at lower affinity, and thus the interactions

are harder to detect. To explain the low frequency of the same
operon PPIs in these low confidence sets, we assume that
bona fide PPIs not encoded in the same operon must be
generally of weaker affinity than the bona fide same operon
PPIs. Beyond the high and low affinity functional pairs, how-
ever, several lines of evidence suggest that most pairs in the
previously published interactomes are false positives that do
not interact and/or are non-functional interactions.

1) Our FDR estimates for the previous nine interactomes are
42–91% when gold standards based on protein complexes
from E. coli are employed (Fig. 7). Although our estimates for
the non-E. coli interactomes are necessarily limited to well
conserved protein pairs, and thus the high FDRs could be
explained if there is a rapid evolution of bona fide PPIs be-
tween species, this concern does not apply to the published
E. coli networks. Because the published non-E. coli interac-
tomes are by other metrics similar in quality to the three
published E. coli interactomes (Fig. 7), the proportion of false
positives among non-conserved protein pairs is probably sim-
ilar to that for conserved pairs in all interactomes. Therefore,
the high FDRs we have estimated for prior interactomes do
not result from a rapid evolution of PPIs.

2) Four of the earlier AP-MS and Y2H studies (17) estimated
FDRs. These prior FDR estimates are all lower than ours for
the same datasets (9–28% versus 66–81%), and the follow-
ing suggest that this is due to the earlier studies underesti-
mating the percent of false positives. Hu et al. (17), for exam-
ple, employed gold standard negatives that were biased
toward proteins that are harder to detect by MS than typical
proteins (see “Results”). Two of the other studies used gold-
negative sets that were the same size as the gold-positive
sets (7, 9), whereas negative sets should approximate the
square of the number of proteins in the positive set divided by
two (see “Experimental Procedures”). As a result, the FDR
would be underestimated by �4-fold. Finally, although Ra-
jagopala et al. (4) did not estimate an FDR, this can be derived
from their gold standard control data, implying an FDR of
�80% (see “Experimental Procedures”).

3) Most of the published interactomes have far fewer pro-
tein pairs that share the same TIGR role than either our high
confidence networks or the benchmark datasets. Low affinity
functional interactors, however, should share the same TIGR
role as often as high affinity pairs. Thus, the low prevalence of
same TIGR role pairs suggests that most pairs in the pub-
lished interactomes have no functional relevance.

4) In AP-MS datasets, pairs between a ribosomal protein and
a non-ribosomal protein lack the hallmarks of bona fide PPIs
(see “Results” and Fig. 4). Such pairs constitute 19–34% of
PPIs in the previously proposed AP-MS interactomes, although
they are excluded from our high confidence sets, suggesting
that these pairs contribute significantly to high FDRs.

Our results also suggest that the poor overlap between Y2H
and AP-MS interactomes cannot be due solely to differences
in the types of interaction that the two methods detect. When
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PPIs are confined to only those that have been reciprocally
confirmed within each study, the agreement between the Y2H
and AP-MS methods increases 5–10-fold (Fig. 7). Further-
more, when Y2H and AP-MS interactomes from the same
species, E. coli, are directly compared, the overlaps are 2–3-
fold higher using our AP-MS interactome than using the in-
teractome proposed by Hu et al. (17) that was based on the
same initial MS dataset (13 and 24% versus 39 and 49%).

The AP-MS and Y2H interactomes for eukaryotes also have
a much higher connectivity than our high confidence D. vul-
garis and E. coli interactomes or the EcoCyc PPIs (5, 10–12,
14, 15, 58, 59). These interactomes could genuinely have
quite different connectivities due to fundamental differences
in the biology of bacteria and eukaryotes. The eukaryotic
studies, however, used methods similar to those employed in
bacteria. For example, several did not calculate an FDR (10,
15, 59); one used a gold-negative set that contained only pairs
whose members are localized differently within cells (5), which
our analysis suggests can lead to underestimated FDRs, see
“Results”; and two performed single step affinity purifications
(58, 59), which are in principle less accurate than tandem
affinity purifications and produce the least accurate of the
three published bacterial AP-MS interactomes (Fig. 7) (com-
pare Arifuzzaman et al. (18) with both Hu et al. (17) and Kuhner
et al. (16)). Thus, many of the proposed protein pairs in the
eukaryotic networks may be either false positives or low af-
finity non-functional interactions.

Conversely, our more selective analysis strategy fails to
detect many bona fide PPIs. For example, we estimate that
our D. vulgaris study should have detected �1196 high con-
fidence PPIs from the 957 bait proteins tested versus the 459
PPIs we reported (see “Results”). We also estimate that if all
proteins were tested as baits �3000 PPIs should be detect-
able in both E. coli and in D. vulgaris. These estimates, how-
ever, are for PPIs that have similar properties to the protein
pairs in the EcoCyc database and in our high confidence sets.
Our work also shows that there are additional lower affinity
PPIs that are not well represented in the EcoCyc dataset. The
proportion of such transient yet functional interactions is un-
known as is the number of interactions involving membrane
proteins because of technological challenges in surveying
membrane complexes. Future efforts should thus focus on
identifying a larger proportion of bona fide PPIs, both high and
low affinity, while maintaining an acceptable FDR.
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